首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single smooth muscle cells were isolated from guinea-pig taenia caeci by digestion with collagenase. The 45Ca desaturation curve from isolated cells, which were previously washed with Ca2+-free solution containing EGTA in Ca2+-free modified Locke solution, consisted of three components (half-time: 1.0, 3.8 and 12.4 min). The 45Ca efflux from isolated cells in the third component was significantly increased by caffeine. This increase was suppressed by procaine, but was not affected by La3+. These results suggest that, in guinea-pig taenia caeci, there are at least four Ca2+ compartments: superficial low and high affinity bound Ca2+ and cellular low and high affinity bound Ca2+. Caffeine releases Ca2+ from the cellular high affinity binding sites.  相似文献   

2.
Techniques to dissociate different sites or stores important for Ca2+ entry or release in smooth muscle include washouts of 45Ca in cold La3+ -substituted solutions. Scatchard-coordinate plots of Ca2+ uptake, substitution of Sr2+ for Ca2+, and both desaturation and rate coefficient plots. Rabbit aortic smooth muscle is particularly useful because Ca2+ mobilization components can be clearly separated. Other vascular preparations investigated (e.g., renal vessels, coronary arteries) appear to have similar components, but their relative importance varies. Respiratory smooth muscle also has similar Ca2+ mobilization components, but they are less readily dissociated by techniques employed in vascular smooth muscles. In guinea pig trachea, cold La3+ washouts do not retain cellular Ca2+ as well as in other preparations: use of other experimental approaches including the Ca2+ channel entry stimulator, CGP 28392, can demonstrate different Ca2+ uptake mechanisms for K+ -stimulated and agonist-induced Ca2+ uptake. In rabbit aorta, CGP 28392 potentiates tension increases elicited with lower concentrations of added K+ but has no effect on norepinephrine-induced contraction. A general model illustrating different Ca2+ entry mechanisms present in three types of smooth muscle provides examples drawn from a spectrum of possible variations in smooth muscle specificity for Ca2+ mobilization.  相似文献   

3.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

4.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

5.
The various protein components of a reversible phosphorylating system regulating smooth muscle actomyosin Mg-ATPase activity have been purified. The enzyme catalyzing phosphorylation of smooth muscle myosin, myosin-kinase, requires Ca2+ and the Ca2+-binding protein calmodulin for activity and binds calmodulin in a ratio of 1 mol calmodulin to 1 mol of myosin kinase. Myosin kinase can be phosphorylated by the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase, and phosphorylation of myosin kinase that does not have calmodulin bound results in a marked decrease in the affinity of this enzyme for Ca2+-calmodulin. This effect is reversed when myosin kinase is dephosphorylated by a phosphatase purified from smooth muscle. When the various components of the smooth muscle myosin phosphorylating-dephosphorylating system are reconstituted, a positive correlation is found between the state of myosin phosphorylation and the actin-activated Mg-ATPase activity of myosin. Unphosphorylated and dephosphorylated myosin cannot be activated by actin, but the phosphorylated and rephosphorylated myosin can be activated by actin. The same relationship between phosphorylation and enzymatic activity was found for a chymotryptic peptide of myosin, smooth muscle heavy meromyosin. The findings reported here suggest one mechanism by which Ca2+ and calmodulin may act to regulate smooth muscle contraction and how cAMP may modulate smooth muscle contractile activity.  相似文献   

6.
To elucidate the regulation mechanisms for sarcolemmal Ca2(+)-pumping ATPase of vascular smooth muscle, the preparation of the membrane fraction of porcine aorta with which the enzyme activity could be analyzed was attempted. A Ca2(+)-activated, Mg2(+)-dependent ATPase [Ca2(+)+Mg2+)-ATPase) activity with high affinity for Ca2+ (Km = 79 +/- 18 nM) was found in a sarcolemma-enriched fraction obtained from digitonin-treated microsomes that possessed the essential properties of plasma membrane (PM) Ca2(+)-pumping ATPases, as determined for the erythrocyte and cardiac muscle enzymes. The activity was stimulated by calmodulin and inhibited by low concentrations of vanadate. Saponin had a stimulatory effect on it. The existence of the PM enzyme in the membrane fraction was substantiated by the Ca2(+)-dependent, hydroxylamine sensitive phosphorylation of a 130K protein, which could be selectively enhanced by LaCl3. The enzyme activity was potentiated by either cGMP or a purified G-kinase. Purified protein kinase C potentiated the enzyme activity. However, none of these agents stimulated the activity of the enzyme purified from microsomes by calmodulin affinity chromatography. The results suggest that the sarcolemmal Ca2(+)-pumping ATPase of vascular smooth muscle is regulated by these protein kinases not through phosphorylation of the enzyme itself but through phosphorylation of membrane components(s) other than the enzyme. Phosphatidylinositol phosphate was found to stimulate the enzyme, suggesting its role in mediation of the stimulatory effects of the protein kinases.  相似文献   

7.
This study examines the dependence of the length-tension (L-T) relationship in vascular smooth muscle on its level of activation. A horizontal shift of the L-T relationship with a change in activation level has been shown in striated muscle when L-T curves could not be superimposed. Active force at each length was normalized to the maximum active force in each curve. Indices of a horizontal shift of a L-T curve include the initial length for an active response (Li) and the length for maximum active force (Lmax). In this study normalized L-T curves were obtained from rings of the dog anterior tibial artery at low (approximately ED50) and high (maximal activation) concentrations of potassium (K+), norepinephrine (NE), and calcium (Ca2+). The normalized curve with a low concentration of K+ or NE was shifted to the right of the curve obtained with a high concentration. Li and Lmax were significantly longer for a low concentration of K+ or NE than a high concentration. With the same concentration of NE (10(-5) M) no difference in the normalized L-T curves, in Li, or in Lmax were found when low (0.085 mM) Ca2+ experiments were compared to normal (1.7 mM) Ca2+ experiments. It may be concluded that the length-tension relationship in vascular smooth muscle is shifted to longer lengths with a decrease in the concentration of a chemical agonist but not by a decrease in external calcium. We suggest that a concentration dependent shift in the length-tension relationship may have a role in the regulation of blood flow.  相似文献   

8.
Synthetic analogs of atrial natriuretic factor (ANF) have been utilized to assess possible mechanisms underlying the vasorelaxation response to this peptide. ANF is a potent relaxant of aortic smooth muscle contracted by a variety of agonists and low (e.g., 20 mM) but not high (e.g., greater than or equal to 80 mM) levels of extracellular K+. The relaxation does not require the presence of a functional endothelium and is temporally associated with the elevation of tissue levels of cyclic GMP resulting from a direct activation of particulate guanylate cyclase. The ANF-induced relaxation is not associated with membrane hyperpolarization but may be related to an alteration of Ca2+ handling by the vascular smooth muscle cell via inhibition of agonist-induced Ca2+ translocation, stimulation of Ca2+ extrusion, or interference with Ca2+ release from intracellular storage sites. ANF displays regional vasorelaxant selectivity in vitro (e.g., arteries vs. veins, central vs. peripheral arteries), which may be, in part, a function of an altered distribution of high-affinity receptors and/or particulate guanylate cyclase. These latter developments may explain the discrepancy between the potent vasorelaxant response in vitro and the modest or limited vasodilator response in whole-animal experiments.  相似文献   

9.
Charybdotoxin (ChTX), a peptidyl inhibitor of the high conductance Ca2+-activated K+ channel (PK,Ca), has been radiolabeled to high specific activity with 125I, and resulting derivatives have been well separated. The monoiodotyrosine adduct blocks PK,Ca in vascular smooth muscle with slightly reduced potency compared with the native peptide under defined experimental conditions. [125I]ChTX, representing this derivative, binds specifically and reversibly to a single class of sites in sarcolemmal membrane vesicles prepared from bovine aortic smooth muscle. These sites display a Kd of 100 pM for the iodinated toxin, as determined by either equilibrium or kinetic binding analyses. Binding site density is about 500 fmol/mg of protein in isolated membranes. The addition of low digitonin concentrations to disrupt the vesicle permeability barrier increases the maximum receptor concentration to 1.5 pmol/mg of protein, correlating with the observations that ChTX binds only at the external pore of PK,Ca and that the membrane preparation is of mixed polarity. Competition studies with ChTX yield a Ki of about 20 pM for native toxin. Binding of [125I]ChTX is modulated by ionic strength as well as by metal ions that are known to interact with PK,Ca. Moreover, tetraethylammonium ion, which blocks PK,Ca with moderately high affinity when applied at the external membrane surface, inhibits [125I]ChTX binding in an apparently competitive fashion with a Ki similar to that found for channel inhibition. In marked contrast, agents that do not inhibit PK,Ca in smooth muscle (e.g. tetrabutylammonium ion, other toxins homologous with ChTX, and pharmacological agents that modulate the activity of dissimilar ion channels) have no effect on [125I]ChTX binding in this tissue. Taken together, these results suggest that the binding sites for ChTX which are present in vascular smooth muscle are directly associated with PK,Ca, thus identifying [125I]ChTX as a useful probe for elucidating the biochemical properties of these channels.  相似文献   

10.
The effects of the antianginal drugs nitroglycerin, nicorandil, diltiazem, verapamil and nicardipine on the activity of calcium-stimulated magnesium-dependent ATPase (Ca2+-ATPase) were investigated in the microsomal fraction from porcine coronary artery smooth muscle cells. Two discrete Ca2+-dependent ATPase components were observed: [1] a high affinity component, which was a specific Ca2+-ATPase, [with a half saturation constant for Ca2+ (Km) of 0.44 microM, and maximum velocity (Vmax) of 124.3 pmol of phosphate (Pi) released/micrograms of protein/30 min]: [2] a low affinity component in which Ca2+ could be replaced by Mg2+ without loss of its activity. Nitroglycerin and nicorandil (1 microM and 10 microM) both stimulated the activity of the Ca2+-ATPase significantly [142 +/- 12 (mean +/- standard error), and 137 +/- 10% of the control with nitroglycerin, and 152 +/- 17 and 135 +/- 20% with nicorandil] at a Ca2+ concentration of 0.3 microM. Diltiazem, verapamil and nicardipine did not cause significant stimulation. Nitroglycerin and nicorandil (1 microM), significantly decreased the Km for Ca2+ from the control value of 0.44 +/- 0.06 microM to 0.26 +/- 0.03 and 0.22 +/- 0.03 microM, respectively. Nitroglycerin and nicorandil may dilate coronary arteries by stimulating this Ca2+ extrusion pump enzyme through reduction of intracellular Ca2+ in smooth muscle cells.  相似文献   

11.
Calcium release in smooth muscle   总被引:16,自引:0,他引:16  
H Karaki  G B Weiss 《Life sciences》1988,42(2):111-122
In smooth muscle, maintenance of the contractile response is due to Ca2+ influx through two types of Ca2+ channel, a voltage-dependent Ca2+ channel and a receptor-linked Ca2+ channel. However, a more transient contraction can be obtained by release of Ca2+ from a cellular store, possibly the sarcoplasmic reticulum. In spike generating smooth muscle (e.g., guinea-pig taenia caeci), spike discharges may trigger the release of cellular Ca2+ by activating a Ca2+-induced Ca2+ release mechanism. Caffeine directly activates this mechanism in the absence of a triggered Ca2+ influx. In contrast to this, maintained depolarization may not only release but also refill the Ca2+ store. Drug-receptor interactions also release Ca2+ from a cellular store. This release may be elicited with inositol trisphosphate produced by receptor-linked phosphoinositide turnover. In non-spike generating smooth muscle (e.g., rabbit thoracic aorta), maintained membrane depolarization does not release but, instead, fills the Ca2+ store. However, caffeine and receptor-agonists release the Ca2+ store - possibly by activating the Ca2+-induced Ca2+ release mechanism and phosphoinositide turnover, respectively. The Ca2+ store in smooth muscle is filled by Ca2+ entry through voltage dependent Ca2+ channels and also by resting Ca2+ influx in the absence of receptor-agonists. The Ca2+ entering the cells through these pathways may be accumulated by the Ca2+ store and may activate the contractile filaments.  相似文献   

12.
The importance of Ca2+ and cAMP in the regulation of cellular functions has been well demonstrated. We studied the effect of angiotensin II (AII), a potent Ca2+-mobilizing hormone, on cAMP accumulation induced by isoproterenol (ISO) and vasoactive intestinal peptide (VIP) in cultured vascular smooth muscle cells (VSMC). Although the addition of AII alone caused little increase of cAMP, it enhanced ISO- and VIP-induced cAMP accumulations in a dose-dependent manner. This enhancement was mimicked by tumor-promoting phorbol ester but not by Ca2+ ionophore. This observation suggested that AII enhanced agonist-induced cAMP accumulation through the activation of protein kinase C in VSMC.  相似文献   

13.
Plasma membrane Ca2+ leak remains the most uncertain of the cellular Ca2+ regulation pathways. During passive Ca2+ influx in non-stimulated smooth muscle cells, basal activity of constitutive Ca2+ channels seems to be involved. In vascular smooth muscle, the 3 following Ca2+ entry pathways contribute to this phenomenon: (i) via voltage-dependent Ca2+ channels, (ii) receptor gated Ca2+ channels, and (iii) store operated Ca2+ channels, although, in airway smooth muscle it seems only 2 passive Ca2+ influx pathways are implicated, one sensitive to SKF 96365 (receptor gated Ca2+ channels) and the other to Ni2+ (store operated Ca2+ channels). Resting Ca2+ entry could provide a sufficient amount of Ca2+ and contribute to resting intracellular Ca2+ concentration ([Ca2+]i), maintenance of the resting membrane potential, myogenic tone, and sarcoplasmic reticulum-Ca2+ refilling. However, further research, especially in airway smooth muscle, is required to better explore the physiological role of this passive Ca2+ influx pathway as it could be involved in airway hyperresponsiveness.  相似文献   

14.
In order to test the physiological significance of inositol 1,4,5-trisphosphate (InsP3) in pharmacomechanical coupling, we have utilized two near-physiological systems, in which relatively high molecular weight solutes can be applied intracellularly and receptor coupling is retained: beta-escin permeabilization and reversible permeabilization. We showed that in smooth muscle permeabilized with beta-escin, one of the saponin esters, alpha 1-adrenergic (phenylephrine) and muscarinic (carbachol) agonists, as well as caffeine and InsP3, cause contractions mediated by Ca2+ release. These contractions were calmodulin-dependent and blocked by depletion of Ca2+ stored in the sarcoplasmic reticulum. Intracellular heparin (Mr = about 5000), a blocker of InsP3 binding to its receptor and a specific inhibitor of InsP3-induced Ca2+ release in smooth muscles, inhibited the responses to the agonists and to InsP3, but not those to caffeine, nor did it block the enhanced contractile response to cytoplasmic Ca2+ induced by agonists and by GTP gamma S. Neomycin blocked Ca2+ release induced by carbachol, but not by caffeine. In reversibly permeabilized ileum smooth muscle cells, loaded with Fura-2 acid and heparin, the intracellular heparin inhibited Ca2+ release and contractions induced by carbachol in Ca2+-free, high K+ solution. Heparin did not inhibit the high K+ contractions (with 1.2 mM Ca2+) and had no significant inhibitory effects on carbachol-induced responses in the presence of extracellular Ca2+. These results, obtained under near-physiological conditions, support the conclusion that InsP3 is the major physiological messenger of the Ca2+ release component of pharmacomechanical coupling, but not of the components mediated by Ca2+ influx or by potentiation of the contractile response to Ca2+.  相似文献   

15.
Intracellular calcium and smooth muscle contraction   总被引:7,自引:0,他引:7  
Excitation-contraction coupling in smooth muscle involves many processes, some of which are outlined in this article. The total amount of Ca2+ released on excitation is considerably in excess of the free Ca2+ concentration and this implies a high capacity, high affinity Ca2+ buffer system. The two major Ca2+-binding proteins are calmodulin and myosin. Only calmodulin has the appropriate binding affinity to act as a component of the Ca2+-buffer system. The Ca2+-calmodulin complex activates myosin light chain kinase and thus is involved in the regulation of contractile activity. Phosphorylation of myosin stabilizes an active conformation and promotes cross bridge cycling and is essential for the initiation of contraction. During the initial contractile response phosphorylation correlates to tension development and velocity of shortening. However, as contraction continues the extent of myosin phosphorylation and velocity often decreases but tension is maintained. In general, the Ca2+ transient is reflected by the extent of phosphorylation that in turn correlates with shortening velocity. Maintenance of tension at low phosphorylation levels is not accounted for within our understanding of the phosphorylation theory and thus alternative regulatory mechanisms have been implicated. Some of the possibilities are discussed.  相似文献   

16.
Dysfunction of calcium handling by smooth muscle in hypertension   总被引:5,自引:0,他引:5  
Dysfunction of ion handling, including binding and fluxes (passive and active transport) of physiologically important ions such as potassium, sodium, calcium, and magnesium, by vascular smooth muscle cell membranes has repeatedly been reported to be associated with the pathophysiology of hypertension. The specific purpose of this review is to summarize and evaluate the evidence for alterations of calcium ion (Ca2+) handling by vascular smooth muscle in various forms of hypertension in the animal model on the basis that regulation of cytoplasmic Ca2+ concentration is a complex and yet vitally important process for a normal function of vascular smooth muscle and that derangement of such a regulation may result in excessive retention of cytoplasmic Ca2+, contribute toward increase of total peripheral resistance, and ultimately lead to elevation of blood pressure. Emphasis is placed upon the consideration of the usefulness of the subcellular membrane fractionation technique in studies of binding and transport of Ca2+ by vascular and nonvascular smooth muscle membranes from genetic as well as experimental hypertensive rats. The limitations of the interpretation of data using such an approach are also considered. Decreased active transport of Ca2+ across isolated plasma membrane vesicles from large and small arteries occurs in several but not all forms of hypertension. This membrane abnormality also occurs in nonvascular smooth muscles and other tissues or cells not confined to the cardiovascular system in genetic hypertension, but not in experimental hypertension. A hypothesis of general membrane defects in spontaneous hypertension is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

18.
Several agents are known to influence the contraction of skeletal and cardiac muscle via a modification of the Ca2+ release mechanism of the sarcoplasmic reticulum, e.g. caffeine, ryanodine, ruthenium red and doxorubicin. Of these substances, only the effects of caffeine and ryanodine have been described in smooth muscle. In this paper we describe the action of ruthenium red and doxorubicin on saponin-skinned mesenteric arteries of the rabbit. A high concentration (20 microM) of ruthenium red inhibited the Ca2+ release induced by low concentrations of caffeine, but had little effect on Ca2+ release induced by high concentrations (20 mM) of caffeine. This result indicates that the Ca2+ release channel of the internal Ca2+ store of smooth muscle cells is less sensitive to inhibition by ruthenium red than that of striated muscle. Doxorubicin in the micromolar range elicited a Ca2+ release and a concomitant contraction, essentially similar to its effect on skinned skeletal muscle cells. This work reveals further similarities between the Ca2+ release mechanisms of smooth and striated muscle, but the results also indicate that important differences between both systems may exist.  相似文献   

19.
The plasmalemma of smooth muscle cells is periodically banded. This arrangement ensures efficient transmission of contractile activity, via the firm, actin-anchoring regions, while the more elastic caveolae-containing "hinge" regions facilitate rapid cellular adaptation to changes in cell length. Since cellular mechanics are undoubtedly regulated by components of the membrane and cytoskeleton, we have investigated the potential role played by annexins (a family of phospholipid- and actin-binding, Ca(2+)-regulated proteins) in regulating sarcolemmal organization. Stimulation of smooth muscle cells elicited a relocation of annexin VI from the cytoplasm to the plasmalemma. In smooth, but not in striated muscle extracts, annexins II and VI coprecipitated with actomyosin and the caveolar fraction of the sarcolemma at elevated Ca(2+) concentrations. Recombination of actomyosin, annexins, and caveolar lipids in the presence of Ca(2+) led to formation of a structured precipitate. Participation of all 3 components was required, indicating that a Ca(2+)-dependent, cytoskeleton-membrane complex had been generated. This association, which occurred at physiological Ca(2+) concentrations, corroborates our biochemical fractionation and immunohistochemical findings and suggests that annexins play a role in regulating sarcolemmal organization during smooth muscle contraction.  相似文献   

20.
Hypoxic pulmonary vasoconstriction (HPV) occurs with ascent to high altitude and can contribute to development of high altitude pulmonary edema (HAPE). Vascular smooth muscle contains carbonic anhydrase (CA), and acetazolamide (AZ), a CA inhibitor, blunts HPV and might be useful in the prevention of HAPE. The mechanism by which AZ impairs HPV is uncertain. Originally developed as a diuretic, AZ also has direct effects on systemic vascular smooth muscle, including modulation of pH and membrane potential; however, the effect of AZ on pulmonary arterial smooth muscle cells (PASMCs) is unknown. Since HPV requires Ca2+ influx into PASMCs and can be modulated by pH, we hypothesized that AZ alters hypoxia-induced changes in PASMC intracellular pH (pH(i)) or Ca2+ concentration ([Ca2+](i)). Using fluorescent microscopy, we tested the effect of AZ as well as two other potent CA inhibitors, benzolamide and ethoxzolamide, which exhibit low and high membrane permeability, respectively, on hypoxia-induced responses in PASMCs. Hypoxia caused a significant increase in [Ca2+](i) but no change in pH(i). All three CA inhibitors slightly decreased basal pH(i), but only AZ caused a concentration-dependent decrease in the [Ca2+](i) response to hypoxia. AZ had no effect on the KCl-induced increase in [Ca2+](i) or membrane potential. N-methyl-AZ, a synthesized compound lacking the unsubstituted sulfonamide group required for CA inhibition, had no effect on pH(i) but inhibited hypoxia-induced Ca2+ responses. These results suggest that AZ attenuates HPV by selectively inhibiting hypoxia-induced Ca2+ responses via a mechanism independent of CA inhibition, changes in pH(i), or membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号