首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies reactive with defined T lymphocyte surface antigens were covalently coupled to protein A-Sepharose beads using the bifunctional imidoester, dimethyl pimelimidate. Sepharose-immobilized antibody reactive with T3 induced the proliferation of resting T lymphocytes in the presence of either recombinant interleukin 2 or phorbol myristate acetate. When monoclonal antibodies reactive with T3 and T4 were coupled to the same Sepharose bead (hereafter designated Sepharose (T3:T4)), proliferation was enhanced an average of three-fold. Similarly prepared Sepharose beads coupled to anti-T3 and anti-T8 also enhanced proliferation over that observed with anti-T3 alone. Sepharose (T3:T4) similarly increased the proliferation of T4+ lymphocytes and a T4+ clone but failed to enhance the proliferation of T8+ lymphocytes. The increased proliferation of T4+ lymphocytes resulted from a preferential activation of the T4+2H4- helper population over the T4+2H4+ suppressor-inducer population. The enhanced proliferation induced by Sepharose (T3:T4) could be completely inhibited by soluble anti-T4. These results suggest that perturbation of T3 may be a minimal signal for T cell activation and that the assembly of a multimeric complex including T3 and T4 may be required for optimal T cell activation.  相似文献   

2.
The effect of exogenous recombinant interleukin-2 (IL-2) or of antibody crosslinking on the activation of human T-cell subsets by IgG2a (OKT3/BMA030), IgG1 (Leu4 and UCHT1), or IgG2b (BMA031) anti-T3 antibodies (CD3) was investigated. In so-called nonresponder cultures as well as in monocyte-depleted cell cultures addition of IL-2 increased the CD3-induced activation and proliferation of T4 and T8 cell subsets. Relatively more T8 than T4 cells were stimulated by antibody binding and IL-2. Crosslinking the cell-bound CD3 antibodies by plastic bound goat anti-mouse antibodies activated both T-cell subsets optimally and increased the IL-2 production of the IgG1-CD3 stimulated cultures. The data show that T cells (T8 greater than T4) can be stimulated by CD3 antibody binding and IL-2, but that crosslinking the cell-bound CD3 antibodies is crucial for optimal T4 cell stimulation and IL-2 production.  相似文献   

3.
The CD44 inhibitor Lutheran [In(Lu)]-related p80 molecule has recently been shown to be identical to the Hermes-1 lymphocyte homing receptor and to the human Pgp-1 molecule. We have determined the effect of addition of CD44 antibodies to in vitro activation assays of PBMC. CD44 antibodies did not induce PBMC proliferation alone, but markedly enhanced PBMC proliferation induced by a mitogenic CD2 antibody pair or by CD3 antibody. CD44 antibody addition had no effect upon PBMC activation induced by PHA or tetanus toxoid. CD44 antibody enhancement of CD2 antibody-induced T cell activation was specific for mature T cells as thymocytes could not be activated in the presence of combinations of CD2 and CD44 antibodies. CD44 antibody enhancement of CD2-mediated T cell triggering occurred if CD44 antibody was placed either on monocytes or on T cells. In experiments with purified monocyte and T cell suspensions, CD44 antibodies A3D8 and A1G3 augmented CD2-mediated T cell activation by three mechanisms. First, CD44 antibody binding to monocytes induced monocyte IL-1 release, second, CD44 antibodies enhanced the adhesion of T cells and monocytes in CD2 antibody-stimulated cultures, and third, CD44 antibodies augmented T cell IL-2 production in response to CD2 antibodies. Thus, ligand binding to CD44 molecules on T cells and monocytes may regulate numerous events on both cell types that are important for T cell activation. Given that recent data suggest that the CD44 molecule may bind to specific ligands on endothelial cells (vascular addressin) and within the extracellular matrix (collagen, fibronectin), these data raise the possibility that binding of T cells to endothelial cells or extracellular matrix proteins may induce or up-regulate T cell activation in inflammatory sites.  相似文献   

4.
Defining the cellular and molecular mechanisms of interaction of developing thymocytes with nonlymphoid cells of the thymic microenvironment is critical for understanding normal thymus function. We have previously shown that the CD2/LFA-3 adhesion pathway is important in the interaction of thymocytes with a variety of LFA-3+ nonlymphoid thymic microenvironment cell types. Moreover, T cell activation via the CD2 (alternative, Ag independent) pathway is considered an important mechanism for intrathymic T cell proliferation. To study the relevance of CD2/LFA-3 interactions to human thymocyte activation, we have used purified LFA-3 Ag in several in vitro assays of thymocyte proliferation. Whereas LFA-3 Ag alone did not induce thymocyte proliferation, LFA-3 Ag in combination with the anti-CD2 antibody, CD2.1, and rIL-2 induced marked thymocyte proliferation. Additionally, the anti-CD28 antibody, Kolt2, could substitute for rIL-2, resulting in thymocyte activation induced by LFA-3 Ag in combination with antibodies CD2.1 and Kolt2. In both triggering systems, LFA-3 induced thymocyte activation was dependent upon the concentration of LFA-3 Ag. LFA-3 Ag-dependent thymocyte activation was directed primarily toward CD1-, mature thymocytes. Finally, intact SRBC that express the sheep homolog of LFA-3, T11TS, in combination with antibody CD2.1 and rIL-2 could also induce thymocyte activation. These data suggest that interaction of LFA-3 molecules with thymocyte CD2 molecules may provide a component of the stimulus for normal intrathymic thymocyte activation leading to thymocyte proliferation.  相似文献   

5.
Murine T and B splenocytes were incubated with antibodies that recognize CD3 or surface IgM. These antibodies induced proliferation of their respective target cells. Once stimulated via their receptors, the proliferation of both CD4+ and CD8+ T but not B lymphocytes was inhibited by class I-specific antibodies or their monovalent Fab' fragments. The inhibition of proliferation was dependent on the site on class I molecules recognized by the antibodies used, with the alpha 1/alpha 2 domains of H-2K molecules representing the major site for inhibition. Only soluble antibody-mediated proliferation could be inhibited by class I-directed antibodies; proliferation induced by CD3-specific antibody immobilized on plastic was not inhibited. Primary allogeneic MLR was also inhibited by class I-specific antibodies. In contrast, neither secondary allogeneic MLR, secondary Ag-specific responses, nor proliferation of CTL clones or tumor cell lines were inhibited by class I-specific antibodies. These results suggest a role for class I molecules in regulation of TCR/CD3- but not surface IgM-mediated cell signaling, which depends on the form of stimulation and the stage of differentiation of T cells.  相似文献   

6.
The capacity of the monoclonal antibodies (Mab) 64.1 and OKT3 directed at CD3 molecules to induce T4 cell proliferation and interleukin 2 (IL 2) production was examined. Each was tested in soluble form or was immobilized by adhering it to the wells of plastic microtiter wells. Soluble anti-CD3 did not induce proliferation of accessory cell (AC)-depleted T4 cells. In contrast, immobilized anti-CD3 induced T4 cell IL 2 production and proliferation in the complete absence of AC. When T4 cells were stimulated with high density immobilized anti-CD3, responses did not require AC, IL 2, or Mab directed at the Tp44 molecule (9.3). In contrast, responses stimulated by lower densities of immobilized anti-CD3 were enhanced by IL 2, AC, and 9.3, and with even lower densities of immobilized anti-CD3 proliferation, required these additional signals. A variety of other immobilized Mab directed at T cell surface proteins including class I major histocompatibility complex encoded gene products, CD2, CD5, 4F2, and Tp44, did not induce proliferation even in the presence of IL 2. Anti-CD4 Mab (66.1) inhibited immobilized anti-CD3-stimulated T4 cell responses, with a greater degree of inhibition noted when lower densities of immobilized anti-CD3 were used to stimulate T4 cells. The data demonstrate that stimulation of T4 cells by anti-CD3 is completely AC independent when the antibody is immobilized onto a surface. Furthermore, the results indicate that maximal stimulation requires multiple interactions with anti-CD3 without internalization of the CD3 molecule. The observation that additional signals are required to support T4 cell proliferation when the density of immobilized anti-CD3 is diminished suggests that these are necessary only when insufficient interactions with the CD3 molecule have occurred to transmit a maximal activation signal to the cell. Finally, the results indicate that anti-CD4 provides a direct inhibitory signal to the T4 cell, the effect of which is inversely proportional to the intensity of the activation signal.  相似文献   

7.
We have generated stable Chinese hamster ovary (CHO) cell transfectants expressing either CD58 or CD59 or both molecules to compare their respective parts played in T cell adhesion and activation. Using a rosetting assay, we have shown the following: 1) The CD59 molecule was directly responsible for adhesive interaction between human T cells and CD59+ CHO transfectants. CD59-mediated adhesion induced 12 +/- 2% (mean +/- SEM, n = 25) of rosettes. 2) The CD58 molecule expressed on CD58+ CHO transfectants induced 29 +/- 6% (mean +/- SEM, n = 8) of rosettes. 3) Double transfected CD58+CD59+ CHO cells formed up to 80% of rosettes, largely exceeding the sum of rosettes formed by single transfectants, thus disclosing at least an additive and possibly a synergic action of both molecules in mediating adhesion to T cells. Culturing purified human T cells in the presence of fixed CHO transfectants and submitogenic doses of PHA + rIL-1 alpha showed that: 1) CD59+ CHO transfectants induced sevenfold T cell proliferation enhancement, demonstrating the direct involvement of the CD59 molecule in T cell activation; 2) CD58+ CHO transfectants induced 20-fold T cell proliferation increase; and 3) the enhancement induced by CD58+CD59+ CHO cells was more than 40-fold. These results suggest that CD58 and CD59 molecules present on the surface of accessory cells might exert synergic function in T cell adhesive interactions and in the stimulation of T cell activation.  相似文献   

8.
The function of the T cell differentiation antigens CD4 (Leu-3/T4) and CD8 (Leu-2/T8) on human cytotoxic T lymphocytes (CTL) is presently seen only in conjugate formation between CTL and target cell via class II or class I MHC antigens rather than in the later killing steps. In this study, human CD4+ and CD8+ CTL clones were used to investigate the effects of monoclonal antibodies against these differentiation antigens on nonspecific triggering of cytotoxicity. Cytotoxicity was induced either by antibodies against the CD3 (T3) antigen or by the lectins Con A and PHA. Anti-CD4 or anti-CD8 antibodies specifically inhibited all types of cytotoxicity of CD4+ or CD8+ CTL, respectively, regardless of the specificity of the CTL for class I or class II HLA antigens and regardless of whether target cells expressed class I or class II antigens. These results are incompatible with an exclusive role of the CD4 and CD8 molecules in MHC class recognition and are discussed with respect to a function as negative signal receptors for these molecules on CTL.  相似文献   

9.
BiTE molecules comprise a new class of bispecific single-chain antibodies redirecting previously unstimulated CD8+ and CD4+ T cells for the elimination of target cells. One example is MT103 (MEDI-538; bscCD19xCD3), a CD19-specific BiTE that can induce lysis of normal and malignant B cells at low picomolar concentrations, which is accompanied by T cell activation. Here, we explored in cell culture the impact of the glucocorticoid derivative dexamethasone on various activation parameters of human T cells in response to MT103. In case cytokine-related side effects should occur with BiTE molecules and other T cell-based approaches during cancer therapy it is important to understand whether glucocorticoids do interfere with the cytotoxic potential of T cells. We found that MT103 induced in the presence of target cells secretion by peripheral T cells of interleukin (IL)-2, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), IL-6, IL-10 and IL-4 into the cell culture medium. Production of all studied cytokines was effectively reduced by dexamethasone at a concentration between 1 and 3x10(-7) M. In contrast, upregulation of activation markers CD69, CD25, CD2 and LFA-1 on both CD4+ and CD8+ T cells, and T cell proliferation were barely affected by the steroid hormone analogue. Most importantly, dexamethasone did not detectably inhibit the cytotoxic activity of MT103-activated T cells against a human B lymphoma line as investigated with lymphocytes from 12 human donors. Glucocorticoids thus qualify as a potential co-medication for therapeutic BiTE molecules and other cytotoxic T cell therapies for treatment of cancer.  相似文献   

10.
Treatment of T cells with the cysteine protease bromelain has been widely used to enhance the binding of human T cells to human E (autologous E rosettes) and has been shown to remove surface T cell CD44 molecules. Ligand binding to CD44 has been shown to markedly augment T cell activation. To study the activation potential of bromelain-treated CD44 T cells, we have compared the proliferation of sham- and bromelain-treated normal human PBMC to mitogenic CD2 mAb. We found that bromelain not only removed T cell CD44, but also removed the CD45RA isoform of CD45 as well as E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 molecules. T cell proliferation in response to CD2 mAb was increased 325% in bromelain-treated PBMC compared to sham-treated PBMC (p < 0.005). Reciprocal treatment experiments using purified T cells and monocytes demonstrated that the enhancement of T cell CD2 activation by bromelain occurred only when T cells were treated with bromelain and was accompanied by increased adhesion of T cells to monocytes. These data demonstrate that expression of portions of the extracellular domains of the CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules are not required for CD2 activation of human T cells. Rather, the removal of these surface molecules by bromelain is associated with enhanced T cell-monocyte aggregation and enhanced CD2-mediated T cell activation. Taken together with data that CD44, E2/MIC2, CD6, and CD7 mAb inhibit CD2/lymphocyte function-associated Ag-3-mediated cellular interactions and also augment CD2-mediated triggering of T cells, these data suggest that members of the bromelain-sensitive group of surface molecules may comprise a set of CD2-associated adhesion ligands that acts in concert to modulate human T cell activation.  相似文献   

11.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

12.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

13.
T lymphocyte activation with monoclonal antibodies directed against the CD2 (T,p50) sheep red blood cell receptor antigen and against CD3 (T,p19,29) has been investigated. Co-stimulation of purified T lymphocytes with anti-CD3 (SP34) and anti-CD2 (9-1), which detects a unique epitope on the CD2 molecule, results in T cell activation and cell proliferation. Each antibody alone is unable to mediate this effect. Co-stimulation of purified T cells with two different anti-CD2 antibodies, 9-1 and 9.6, which detect two different epitopes on the CD2 molecule, are also mitogenic. In contrast, the combination of anti-CD3 (SP34) and anti-CD2 (9.6) cannot induce T cell activation. These data suggest that the CD2 epitope defined by the 9-1 antibody is functionally important for T cell activation via the CD3/Ti complex. Furthermore, it is demonstrated that anti-CD3 (SP34) induces epitopic modulation of the CD2 molecule, resulting in enhanced expression of the CD2, 9-1 epitope. This epitope modulation of the CD2 (9-1) epitope by anti-CD3 (SP34) occurs instantaneously at 4 degrees C and in the presence of NaN3. The functional interaction between CD3 and CD2 occurs in spite of any evidence of complex formation between these two molecules. These data suggest that the T cell differentiation antigens CD3 and CD2 are jointly involved in antigen-specific T cell activation. The data are consistent with a model for antigen-specific T cell activation involving both the CD3/Ti complex and subsequent activation of the CD2 complex T cell activation by co-stimulation with anti-CD3 (SP34) and anti-CD2 (9-1) is substantially enhanced by the addition of exogenous, purified interleukin 1 (IL 1). These data would suggest that the CD2 complex, as well as the putative IL 1 receptor, are involved in separate and complementary receptor-ligand interactions, resulting in the amplification of antigen-specific T cell responses.  相似文献   

14.
The role of distinct regions of HLA class I molecules in regulating T-cell activation via the CD3-antigen receptor complex was investigated. Monoclonal antibodies (MoAbs) which recognize monomorphic and polymorphic epitopes on HLA Class I molecules were shown to inhibit T-cell proliferation to OKT3. These MoAbs have differential effects on the synthesis of interleukin-2 (IL-2) and IL-2 receptor expression. Cell cycle analysis demonstrated that these MoAbs function both in inhibiting cell cycle entry (G0-G1 shift) and in blocking cell cycle progression (G1-S shift) of activated T cells. Furthermore, these MoAbs have regulatory effects on the alternate pathway of T-cell activation via the CD2 molecule, T-cell activation induced by PHA, and activation induced by the phorbol ester PMA in conjunction with the calcium ionophore Ionomycin. Thus these MoAbs have different effects depending upon the pathway of T-cell activation. The results indicate that HLA class I molecules are selectively involved in the sequence of intracellular events leading to T-cell activation and proliferation.  相似文献   

15.
Interaction of the glycosyl phosphatidylinositol-linked differentiation Ag CD73 (ecto-5'-nucleotidase) with the CD73-specific mAb 1E9 generates agonistic signals that strongly synergize with T cell activation induced by CD3 and CD2 mAb. This synergy is observed only when 1E9 is immobilized on plastic and occurs in the absence of accessory cells or exogenous lymphokines. 1E9 induces a rapid (though transient) increase in [Ca2+]i in a minor proportion (20 to 30%) of unfractionated T lymphocytes (presumably CD73+ cells). However, this [Ca2+]i mobilization is not sufficient to fully activate CD73+ T cells, as shown by the requirement of additional signals such as CD3 or CD2 stimulation to initiate T cell proliferation. These signals cannot be substituted by the exogenous lymphokines, rIL-1, rIL-2, or rIL-4, or PMA (when T cells are rigorously depleted of monocytes). These data indicate that CD73 may behave as an accessory molecule regulating interactions between T cells and antigens or APC. A comparison was carried out with mAb 9.3 to the differentiation Ag CD28, another agonistic molecule with activating properties similar to CD73. Despite their lower percentage, the ability of CD73+ T cells to amplify the proliferation induced by CD3 or CD2 mAb was equivalent or even greater than that of CD28+ T cells. Once activated, CD73+ cells may recruit the remaining (CD73-) cells primed by CD3 or CD2 stimulation. Based on these data, we suggest that CD73+ T lymphocytes may be a specialized subset to amplify immune responses originated by the CD3 and CD2 activation pathways. Finally, the functional association between CD73 and integral membrane molecules like CD3 and CD2 suggests that GPI-anchored molecules may play a role in transmembrane signaling mediated by conventional second messenger systems.  相似文献   

16.
The impact of BCR:CD21 co-engagement on B cell expression of molecules critical for T cell activation was investigated with receptor-specific mAbs conjugated to high MW dextran as stimulatory ligands. In the absence of IL-4, BCR:CD21 co-ligation augmented BCR-triggered CD86 only under conditions of very low BCR ligand dose or affinity, and CD80 was minimally induced by BCR and/or CD21 crosslinking. In the presence of IL-4, BCR:CD21 co-ligation augmented CD86 and CD80 expression under conditions of greater BCR engagement. However, with very high level BCR engagement, no bonus effect of BCR:CD21 crosslinking was observed. Co-ligation-promoted CD86 and CD80 expression was associated with heightened B cell activation of resting allogeneic T cells. The data suggest that co-clustering of BCR and the CD21/CD19 co-stimulatory complex following B cell engagement with C3d-bound microbial or self-antigens will enhance B cell recruitment of T cell help only when IL-4 is present and/or BCR engagement is very limiting.  相似文献   

17.
The T cell differentiation molecule CD8 is thought to play an important role in class I major histocompatibility complex-restricted T cell activities but the precise function of this molecule is unknown. To explore this question, we have studied several CD3+, CD8+ class I alloantigen-specific cytotoxic T lymphocyte (CTL) lines and clones. The ability of these CTL to proliferate as well as to lyse specific targets was inhibited by either anti-CD3 or anti-CD8 monoclonal antibodies. Exposure of CTL to relevant but not irrelevant target cells induced the rapid (less than 1 hr) disappearance of approximately 20 to 30% of CD3 and CD8 molecules from the cell surface. The modulation of these molecules became maximal at 6 to 12 hr and recovered thereafter in parallel. Treatment of CTL with anti-CD8 prevented alloantigen-induced modulation of CD3, and treatment with anti-CD3 blocked modulation of CD8. Incubation of CTL with the combination of anti-CD3 and goat anti-mouse Ig also resulted in modulation of CD8. In contrast, the expression of other CTL surface antigens, such as CD2 (Leu-5, T11) and HLA-DR, was not reduced by any of these manipulations. These results suggest that CD8 molecules are associated with the CD3/antigen receptor complex on the surface of CTL, and may play a direct role in antigen-induced modulation and cross-linking of the T cell receptor.  相似文献   

18.
Thy-1 (CD90) expressed by mouse T cells is known to have signal transducing properties, but the ability of Thy-1 to enhance cytotoxic T lymphocyte (CTL) development is not well understood. Here we show that stimulation of mouse T cells with monoclonal antibodies (mAb) to CD3, CD28 and Thy-1 (clone G7), which were coimmobilized on polystyrene microbeads, resulted in a greater proliferative response than stimulation with only anti-CD3 and anti-CD28 mAb, indicating that Thy-1 cross-linking enhanced T cell receptor/CD28-driven T cell activation. Consistent with this finding, Thy-1 blockade with a soluble nonactivating anti-Thy-1 mAb (clone 30-H12) inhibited anti-CD3-induced proliferation of CD4+ and CD8+ T cells, and the induction of cytotoxic effector cells in a dose-dependent fashion. Interleukin-2 synthesis and CD25 expression were also impaired by Thy-1 blockade. The inhibitory effect involved a defect at or before the level of protein kinase C activation because the addition of phorbol ester ablated the anti-Thy-1-mediated inhibition of anti-CD3-induced T cell activation. The CTL that were induced in the presence of blocking anti-Thy-1 mAb adhered to target cells but showed reduced expression of granzyme B and perforin. In contrast, Fas ligand expression and function was not affected by Thy-1 blockade. We conclude that Thy-1 signalling promotes the in vitro generation of CTL that kill in a granule-dependent fashion.  相似文献   

19.
20.
This study reports early B and T cell signaling events during cognate interactions between a human B cell line pulsed with peptide and an Ag-specific T cell clone. As has been previously reported, peptide in the context of the appropriate class II molecule stimulated a rise in intracellular calcium [Ca2+]i in the Ag-specific T cell clone. The activation of the T cell clone was associated with a reciprocal rise in [Ca2+]i in the B cells. Engagement of receptors on the B cell surface by the T cell also was associated with inositol phospholipid turnover comparable to that elicited by stimulation through sIg. Early signaling events in B cells can therefore be stimulated in cognate interactions with Ag-specific T cells, without the direct engagement of Ig receptors. A class II deficient B lymphoblastoid mutant, 6.1.6, which was incapable of presenting peptide to the T cell clone, could be stimulated to produce a rise in [Ca2+]i if the T cell clone was activated by monoclonal antibodies to CD3. Therefore, the interaction of class II molecules on the B cell with the TCR and/or the CD4 accessory molecule was not essential for T-dependent B cell activation. However, T-dependent signalling of B cells was profoundly inhibited by mAb to CD18 (beta-chain of LFA-1) on the T cell or CD54 (ICAM-1) on the B cell, demonstrating the importance of this pair of adhesion molecules in early T-B cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号