首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not "rudimentary" or "residual" mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica.  相似文献   

2.
Ultrastructural analysis of Entamoeba histolytica reveals that this intestinal human pathogen lacks recognizable mitochondria, but the presence in its genome of genes encoding proteins of mitochondrial origin suggests the existence of a mitochondrially derived compartment. We have cloned the full-length E. histolytica gene encoding one such protein, chaperonin CPN60, and have characterized its structure and expression. Using an affinity-purified antibody raised against recombinant protein, we have localized native E. histolytica CPN60 to a previously undescribed organelle of putative mitochondrial origin, the mitosome. Most cells contain only one mitosome, as determined by immunofluorescence studies. Entamoeba histolytica CPN60 has an amino-terminal extension reminiscent of known mitochondrial and hydrogenosomal targeting signals. Deletion of the first 15 amino acids of CPN60 leads to an accumulation of the truncated protein in the cytoplasm. However, this mutant phenotype can be reversed by replacement of the deleted amino acids with a mitochondrial targeting signal from Trypanosoma cruzi HSP70. The observed functional conservation between mitochondrial import in trypanosomes and mitosome import in Entamoeba is strong evidence that the E. histolytica organelle housing chaperonin CPN60 represents a mitochondrial remnant.  相似文献   

3.
Proteins of the mitochondrial carrier family (MCF) are located mainly in the inner mitochondrial membrane and mediate the transport of a large range of metabolic intermediates. The genome of Trypanosoma brucei harbors 29 genes encoding different MCF proteins. We describe here the characterization of MCP6, a novel T. brucei MCF protein. Sequence comparison and phylogenetic reconstruction revealed that MCP6 is closely related to different mitochondrial ADP/ATP and calcium-dependent solute carriers, including the ATP-Mg/Pi carrier of Homo sapiens. However, MCP6 lacks essential amino acids and sequence motifs conserved in these metabolite transporters, and functional reconstitution and transport assays with E. coli suggested that this protein indeed does not function as an ADP/ATP or ATP-Mg/Pi carrier. The subcellular localization of MCP6 is developmentally regulated: in bloodstream-form trypanosomes, the protein is predominantly glycosomal, whereas in the procyclic form, it is found mainly in the mitochondria. Depletion of MCP6 in procyclic trypanosomes resulted in growth inhibition, an increased cell size, aberrant numbers of nuclei and kinetoplasts, and abnormal kinetoplast morphology, suggesting that depletion of MCP6 inhibits division of the kinetoplast.  相似文献   

4.
The mitochondrion is one of the defining characteristics of eukaryotic cells, and to date, no eukaryotic lineage has been shown to have lost mitochondria entirely. In certain anaerobic or microaerophilic lineages, however, the mitochondrion has become severely reduced that it lacks a genome and no longer synthesizes ATP. One example of such a reduced organelle, called the mitosome, is found in microsporidian parasites. Only a handful of potential mitosomal proteins were found to be encoded in the complete genome of the microsporidian Encephalitozoon cuniculi, and significantly no proteins of the mitochondrial carrier family were identified. These carriers facilitate the transport of solutes across the inner mitochondrial membrane, are a means of communication between the mitochondrion and cytosol, and are abundant in organisms with aerobic mitochondria. Here, we report the characterization of a mitochondrial carrier protein in the microsporidian Antonospora locustae and demonstrate that the protein is heterologously targeted to mitochondria in Saccharomyces cerevisiae. The protein is phylogenetically allied to the NAD+ transporter of S. cerevisiae, but we show that it has high specificity for ATP and ADP when expressed in Escherichia coli. An ADP/ATP carrier may provide ATP for essential ATP-dependent mitosomal processes such as Hsp70-dependent protein import and export of iron-sulfur clusters to the cytosol.  相似文献   

5.
The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-generating organelles of certain anaerobic unicellular eukaryotes, are believed to have evolved from the same ancestral endosymbiont that gave rise to present day mitochondria. Notably, the hydrogenosomes of the parasitic anaerobic flagellate Trichomonas seemed to be deficient in mitochondrial-type AACs. Instead, HMP 31, a different member of the mitochondrial carrier family (MCF) with a hitherto unknown function, is abundant in the hydrogenosomal membranes of Trichomonas vaginalis. Here we show that the homologous HMP 31 of closely related Trichomonas gallinae specifically transports ADP and ATP with high efficiency, as do genuine mitochondrial AACs. However, phylogenetic analysis and its resistance against bongkrekic acid (BKA, an efficient inhibitor of mitochondrial-type AACs) identify HMP 31 as a member of the mitochondrial carrier family that is distinct from all mitochondrial and hydrogenosomal AACs studied so far. Thus, our data support the hypothesis that the various hydrogenosomes evolved repeatedly and independently.  相似文献   

6.
Haferkamp I 《FEBS letters》2007,581(12):2375-2379
Sequencing of plant genomes allowed the identification of various members of the mitochondrial carrier family (MCF). In plants, these structurally related proteins are involved in the transport of solutes like nucleotides, phosphate, di- and tricarboxylates across the mitochondrial membrane and therefore exhibit physiological functions similar to known isoforms from animal or yeast mitochondria. Interestingly, various studies led to the recognition of MCF proteins which mediate the transport of different substrates like folates, S-adenosylmethionine, ADPglucose or ATP, ADP and AMP in plastids.  相似文献   

7.
Different transport pathways of individual precursor proteins in mitochondria   总被引:20,自引:0,他引:20  
Transport of mitochondrial precursor proteins into mitochondria of Neurospora crassa was studied in a cell-free reconstituted system. Precursors were synthesized in a reticulocyte lysate programmed with Neurospora mRNA and transported into isolated mitochondria in the absence of protein synthesis. Uptake of the following precursors was investigated: apocytochrome c, ADP/ATP carrier and subunit 9 of the oligomycin-sensitive ATPase. Addition of high concentrations of unlabelled chemically prepared apocytochrome c (1-10 microM) inhibited the appearance in the mitochondrial of labelled cytochrome c synthesized in vitro because the unlabelled protein dilutes the labelled one and because the translocation system has a limited capacity [apparent V is 1-3 pmol X min-1 X (mg mitochondrial protein)-1]. Concentrations of added apocytochrome c exceeding the concentrations of precursor proteins synthesized in vitro by a factor of about 10(4) did not inhibit the transfer of ADP/ATP carrier or ATPase subunit 9 into mitochondria. Carbonylcyanide m-chlorophenylhydrazone, an uncoupler of oxidate phosphorylation, inhibited transfer in vitro of ADP/ATP carrier and of ATPase subunit 9, but not of cytochrome c. These findings suggest that cytochrome c and the other two proteins have different import pathways into mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondria. It can be inferred from the data presented that different 'receptors' on the mitochondrial surface mediate the specific recognition of precursor proteins by mitochondria by mitochondria as a first step in the transport process.  相似文献   

8.
The expression of mitochondrial and hydrogenosomal ADP/ATP carriers (AACs) from plants, rat and the anaerobic chytridiomycete fungus Neocallimastix spec. L2 in Escherichia coli allows a functional integration of the recombinant proteins into the bacterial cytoplasmic membrane. For AAC1 and AAC2 from rat, apparent Km values of about 40 microm for ADP, and 105 microm or 140 microm, respectively, for ATP have been determined, similar to the data reported for isolated rat mitochondria. The apparent Km for ATP decreased up to 10-fold in the presence of the protonophore m-chlorocarbonylcyanide phenylhydrazone (CCCP). The hydrogenosomal AAC isolated from the chytrid fungus Neocallimastix spec. L2 exhibited the same characteristics, but the affinities for ADP (165 microm) and ATP (2.33 mm) were significantly lower. Notably, AAC1-3 from Arabidopsis thaliana and AAC1 from Solanum tuberosum (potato) showed significantly higher external affinities for both nucleotides (10-22 microm); they were only slightly influenced by CCCP. Studies on intact plant mitochondria confirmed these observations. Back exchange experiments with preloaded E. coli cells expressing AACs indicate a preferential export of ATP for all AACs tested. This is the first report of a functional integration of proteins belonging to the mitochondrial carrier family (MCF) into a bacterial cytoplasmic membrane. The technique described here provides a relatively simple and highly reproducible method for functional studies of individual mitochondrial-type carrier proteins from organisms that do not allow the application of sophisticated genetic techniques.  相似文献   

9.
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.  相似文献   

10.
The rat liver mitochondrial phosphate transporter contains a 44-amino acid presequence. The role of this presequence is not clear since the ADP/ATP carrier and the brown fat uncoupling protein, related members of a family of inner membrane anion transporters, lack a presequence and contain targeting information within the mature protein. Here, we present evidence that the rat liver mitochondrial phosphate transporter can be synthesized in vitro, imported into mitochondria, and processed to a protein of Mr 33,000. Import requires the membrane potential and external nucleotide triphosphate. The presequence inserts into the outer mitochondrial membrane, and import proceeds via a process similar to other proteins destined for the inner membrane or matrix. A mutant phosphate transporter lacking 35 amino acids at the NH2 terminus of the presequence has little capacity for mitochondrial import. The rat liver phosphate transporter is also imported and processed by rat kidney mitochondria and by mitochondria from the yeast Saccharomyces cerevisiae. A site-directed mutation of the N-ethyl-maleimide reactive cysteine 41 does not affect import or processing. The results presented show that optimal import of the mitochondrial phosphate transporter, unlike the ADP/ATP carrier and the brown fat uncoupling protein, is dependent on a presequence. As these carriers are believed to have evolved from a single gene, it seems likely that the H+/Pi carrier, known to be present in prokaryotes, appeared first and that subsequent evolutionary events leading to the other anion carriers eliminated the presequence.  相似文献   

11.
Oxa1 serves as a protein insertase of the mitochondrial inner membrane that is evolutionary related to the bacterial YidC insertase. Its activity is critical for membrane integration of mitochondrial translation products and conservatively sorted inner membrane proteins after their passage through the matrix. All Oxa1 substrates identified thus far have bacterial homologs and are of endosymbiotic origin. Here, we show that Oxa1 is critical for the biogenesis of members of the mitochondrial carrier proteins. Deletion mutants lacking Oxa1 show reduced steady‐state levels and activities of the mitochondrial ATP/ADP carrier protein Aac2. To reduce the risk of indirect effects, we generated a novel temperature-sensitive oxa1 mutant that allows rapid depletion of a mutated Oxa1 variant in situ by mitochondrial proteolysis. Oxa1-depleted mitochondria isolated from this mutant still contain normal levels of the membrane potential and of respiratory chain complexes. Nevertheless, in vitro import experiments showed severely reduced import rates of Aac2 and other members of the carrier family, whereas the import of matrix proteins was unaffected. From this, we conclude that Oxa1 is directly or indirectly required for efficient biogenesis of carrier proteins. This was unexpected, since carrier proteins are inserted into the inner membrane from the intermembrane space side and lack bacterial homologs. Our observations suggest that the function of Oxa1 is relevant not only for the biogenesis of conserved mitochondrial components such as respiratory chain complexes or ABC transporters but also for mitochondria-specific membrane proteins of eukaryotic origin.  相似文献   

12.
J R Aprille 《FASEB journal》1988,2(10):2547-2556
The ATP-Mg/Pi carrier in liver mitochondria can catalyze the exchange of ATP-Mg on one side of the inner membrane for Pi on the other. This mechanism allows for net uptake or release of ATP-Mg from mitochondria and thus regulates the matrix ATP + ADP + AMP pool size. In isolated mitochondria, carrier activity is stimulated by submicromolar concentrations of calcium, suggesting that calcium may regulate transport rates in vivo. Whenever the carrier is active, the direction of any net changes in the matrix adenine nucleotide pool size is determined mainly by the extent to which the prevailing ATP-Mg concentration gradient deviates from an equilibrium related to delta pH through the phosphate concentration gradient. Thus it seems that in the cell, energy status (reflected by ATP:ADP ratios in the cytoplasm and matrix) determines whether calcium-mediated hormone activation of the carrier will produce an increase or a decrease in the matrix adenine nucleotide content. Consequent variations in the absolute concentrations of ATP, ADP, and AMP in the matrix may contribute to the selective regulation of those metabolic activities in the cell that have adenine nucleotide dependent steps localized to the mitochondrial compartment (gluconeogenesis, urea synthesis, mitochondrial biogenesis, and even oxidative phosphorylation).  相似文献   

13.
The amitochondriate protistan parasite Entamoeba histolytica has lost most mitochondrial functions secondarily but has retained a reduced organelle of mitochondrial origin, the mitosome. We here investigate the presence, origins, and expression in other species of Entamoeba of three genes of mitochondrial origin--pyridine nucleotide transhydrogenase and the mitochondrial-type chaperonins cpn60 and hsp70. The genes appear to be present in all species and specifically related, confirming that the E. histolytica mitosomal genes were not acquired recently by lateral transfer from another organism. Detection of expression was not possible in all cases under the culture conditions used, but several genes were induced during recovery from exposure to a heat shock. This includes the transhydrogenase, which to our knowledge has not been shown previously to be a heat-shock protein.  相似文献   

14.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

15.
The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family (MCF). It exchanges ADP and ATP between matrix and intermembrane space. It is postulated from numerous experiments that the inactive Ancp bound to one of its inhibitors (CATR or BA) is a dimer, and it is inferred that the active unit is a dimer, too. However, the structure of beef Ancp bound to CATR obtained at high resolution is that of a monomer. To ascertain the dimeric organization of Ancp, we have constructed covalent tandem dimers of which one "subunit" (protomer) is the wild type and the other is inactive for ADP/ATP exchange. We have chosen either the op1 mutant or another member of the MCF, the phosphate carrier (Picp). Activities of the chimeras were first evaluated in vivo. The Ancp/op1 constructs exchange the adenine nucleotides. The Anc/Pic chimeras are considered as bifunctional forms since they exchange ADP and ATP and transport P(i) within the same cells. We have then controlled the fact that the chimeras are stable in vivo and in vitro. Proteinase K digestion showed that both protomers of Ancp/op1 have similar organization in the membrane. Analyses of kinetic properties indicated that protomers of Ancp/op1 chimeras crosstalk during the nucleotide exchange unlike those of Anc/Pic. However, full inhibition of phosphate uptake by CATR, a very specific inhibitor of Ancp, strongly suggests that the native functional unit of Ancp, and thus of Picp, is a dimer.  相似文献   

16.
Structural studies of membrane protein are still challenging due to several severe bottlenecks, the first being the overproduction of well-folded proteins. Several expression systems are often explored in parallel to fulfil this task, or alternately prokaryotic analogues are considered. Although, mitochondrial carriers play key roles in several metabolic pathways, only the structure of the ADP/ATP carrier purified from bovine heart mitochondria was determined so far. More generally, characterisations at the molecular level are restricted to ADP/ATP carrier or the uncoupling protein UCP1, another member of the mitochondrial carrier family, which is abundant in brown adipose tissues. Indeed, mitochondrial carriers have no prokaryotic homologues and very few efficient expression systems were described so far for these proteins. We succeeded in producing UCP1 using a cell free expression system based on E. coli extracts, in quantities that are compatible with structural approaches. The protein was synthesised in the presence of a fluorinated surfactant, which maintains the protein in a soluble form. Further biochemical and biophysical analysis such as size exclusion chromatography, circular dichroism and thermal stability, of the purified protein showed that the protein is non-aggregated, monodisperse and well-folded.  相似文献   

17.
The dynamic model developed in our previous publications [1,2] was used to calculate the flux control coefficients of oxidation, phosphorylation and proton leak fluxes for isolated mitochondria and for three modes of work of intact cells (hepatocytes). The results obtained were compared with experimental data, especially those measured in the frame of the 'top-down approach' of the metabolic control theory. A good agreement for mitochondria and for intact cells was found. The control of the oxygen consumption flux is shared between the ATP utilization (main controlling factor), substrate dehydrogenation, proton leak and, in some conditions, the ATP/ADP carrier. The phosphorylation subsystem seemed to be controlled mainly by itself, while the proton leak was influenced by all three subsystems. It was also shown that the large relative change in the enzyme activity during inhibitor titration of mitochondria or cells could lead to the overestimation of some flux control coefficient values in experimental measurements. An influence of some hormones (glucagon, vasopressin, adrenaline and others) on the mitochondrial respiration was also simulated. Our results suggest that these hormones stimulate the substrate dehydrogenation as well as the phosphorylation system (ATP usage and, possibly, the ATP/ADP carrier).  相似文献   

18.
Mitochondria often reside in subcellular regions with high metabolic demands. We examined the mechanisms that can govern the relocation of mitochondria to these sites in respiratory neurons. Mitochondria were visualized using tetramethylrhodamineethylester, and their movements were analyzed by applying single-particle tracking. Intracellular ATP ([ATP](i)) was assessed by imaging the luminescence of luciferase, the fluorescence of the ATP analog TNP-ATP, and by monitoring the activity of K(ATP) channels. Directed movements of mitochondria were accompanied by transient increases in TNP-ATP fluorescence. Application of glutamate and hypoxia reversibly decreased [ATP](i) levels and inhibited the directed transport. Injections of ATP did not rescue the motility of mitochondria after its inhibition by hypoxia. Introduction of ADP suppressed mitochondrial movements and occluded the effects of subsequent hypoxia. Mitochondria decreased their velocity in the proximity of synapses that correlated with local [ATP](i) depletions. Using a model of motor-assisted transport and Monte Carlo simulations, we showed that mitochondrial traffic is more sensitive to increases in [ADP](i) than to [ATP](i) depletions. We propose that consumption of synaptic ATP can produce local increases in [ADP](i) and facilitate the targeting of mitochondria to synapses.  相似文献   

19.
A novel photoactivatable radioactive ADP derivative, namely, 2-azido-3'-O-naphthoyl-[beta-(32)P]ADP (2-azido-N-[(32)P]ADP), was synthesized with the aim at mapping the substrate binding site(s) of the yeast mitochondrial ADP/ATP carrier. It was used with mitochondria isolated from genetically modified strains of Saccharomyces cerevisiae, producing the native or the His-tagged Anc2p isoform of the carrier. In darkness, 2-azido-N-[(32)P]ADP was reversibly bound to the carrier in mitochondria, without being transported. Upon photoirradiation, only the ADP/ATP carrier was covalently radiolabeled among all mitochondrial proteins. Specificity of labeling was demonstrated since carboxyatractyloside (CATR), a potent inhibitor of ADP/ATP transport, totally prevented the incorporation of the photoprobe. To localize the radioactive region(s), the purified photolabeled carrier was submitted to CNBr or hydroxylamine cleavage. The resulting fragments were characterized and identified by SDS-PAGE, Western blotting, amino acid sequencing, and MALDI-MS and ESI-MS analyses. Two short photolabeled distinct segments, eight and nine residues long, were identified: S183-R191, located in the central part of the ADP/ATP carrier; and I311-K318, belonging to its C-terminal end. Plausible models of organization of the nucleotide binding site(s) of the carrier involving the two regions specifically labeled by 2-azido-N-[(32)P]ADP are proposed.  相似文献   

20.
A cDNA encoding the precursor of the bovine mitochondrial phosphate carrier protein has been cloned from a bovine cDNA library using a mixture of 128 different 17-mer oligonucleotides as hybridisation probe. The protein has an N-terminal extension of 49 amino acids not present in the mature protein. This extension has a net positive charge and is presumed to direct the import of the protein from the cytoplasm to the mitochondrion. Comparison of the protein sequence of the mature phosphate carrier with itself, with ADP/ATP translocase and with the uncoupling protein from brown fat mitochondria shows that all three proteins contain a 3-fold repeated sequence approximately 100 amino acids in length, and that the repeats in the three proteins are related to each other. This implies that the three proteins have related three-dimensional structures and mechanisms and that they share a common evolutionary origin. The distribution of hydrophobic residues in the phosphate carrier protein suggests that each repeated 100 amino acid element is composed of two membrane-spanning alpha-helices linked by an extensive hydrophilic domain. This model is similar to that first proposed for the ADP/ATP translocase and later for the brown fat mitochondria uncoupling protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号