首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley (Hordeum vulgare L.) has two, differentially regulated, nitrate reductase (NR) genes, one encoding the NADH-specific NR (Nar1) and the other encoding the NAD(P)H-bispecific NR (Nar7). Regulation of the two NR genes by nitrate was investigated in wild-type Steptoe and in an NADH-specific NR structural gene mutant (Az12). Gene-specific probes were used to estimate NADH and NAD(P)H NR mRNAs. The kinetics of induction by nitrate were similar for the two NR genes; expression was generally below the limits of detection prior to induction, reached maximum levels after 1 to 2 h of induction in roots and 4 to 8 h of induction in leaves, and then declined to steady-state levels. Derepression of the NAD(P)H NR gene in leaves of the NADH-specific NR gene mutant Az12 did not appear to be associated with changes in nitrate assimilation products or nitrate flux. Nitrate deprivation resulted in rapid decreases in NADH and NAD(P)H NR mRNAs in seedling roots and leaves and equally rapid decreases in the concentration of nitrate in the xylem sap. These results indicate that factors affecting nitrate uptake and transport could have a direct influence on NR expression in barley leaves.  相似文献   

2.
The short-lived radiotracer 13N was used to study feedback regulation of nitrate influx through the inducible high-affinity transport system of barley (Hordeum vulgare L. cv Steptoe) roots. Both wild-type plants and the mutant line Az12:Az70 (genotype nar1a;nar7w), which is deficient in the NADH-specific and NAD(P)H-bispecific nitrate reductases (R.L. Warner, R.C. Huffaker [1989] Plant Physiol 91: 947-953) showed strong feedback inhibition of nitrate influx within approximately 5 d of exposure to 100 fmu]M nitrate. The result with the mutant, in which the flux of nitrogen into reduced products is greatly reduced, indicated that nitrate itself was capable of exercising feedback regulation upon its own influx. This conclusion was supported by the observation that feedback in wild-type plants occurred in both the presence and absence of L-methionine sulfoximine, an inhibitor of ammonium assimilation. Nitrite and ammonium were also found to be capable of exerting feedback inhibition upon nitrate influx, although it was not determined whether these ions themselves or subsequent metabolites were responsible for the effect. It is suggested that feed-back regulation of nitrate influx is potentially mediated through several nitrogen pools, including that of nitrate itself.  相似文献   

3.
Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.  相似文献   

4.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

5.
Summary Barley (Hordeum vulgare L.) has both NADH-specific and NAD(P)H-bispecific nitrate reductases. Genomic and cDNA clones of the NADH nitrate reductase have been sequenced. In this study, a genomic clone (pMJ4.1) of a second type of nitrate reductase was isolated from barley by homology to a partial-length NADH nitrate reductase cDNA and the sequence determined. The open reading frame encodes a polypeptide of 891 amino acids and its interrupted by two small introns. The deduced amino acid sequence has 70% identity to the barley NADH-specific nitrate reductase. The non-coding regions of the pMJ4.1 gene have low homology (ca. 40%) to the corresponding regions of the NADH nitrate reductase gene. Expression of the pMJ4.1 nitrate reductase gene is induced by nitrate in root tissues which corresponds to the induction of NAD(P)H nitrate reductase activity. The pMJ4.1 nitrate reductase gene is sufficiently different from all previously reported higher plant nitrate reductase genes to suggest that it encodes the barley NAD(P)H-bispecific nitrate reductase.Scientific Paper No. 9101-14. College of Agriculture and Home Economics Research Center, Washington State University, Research Project Nos. 0233 and 0745  相似文献   

6.
Transformation of Rhizobium japonicum CB1809 was studied using DNA from the cyanobacterium Nostoc muscorum ATCC 27893. A spontaneous nitrate reductase deficient (Nar-) mutant (NR-6) of R. japonicum CB1809 was isolated with a frequency of 8.4 X 10(-7). Streptomycin (Sm) and Neomycin (Neo) resistance markers were introduced into strain NR-6, and the resulting strain was designated NR-6 SmR NeoR. Experiments with cyanobacterial DNA and live cells of strain NR-6 SmR NeoR indicated transformation of nitrate reductase (nar) genes of N. muscorum into this strain. This conclusion was supported by the reversion frequency of strain NR-6 SmR NeoR to Nar+ and the transformation frequency when recipient cells were exposed to N. muscorum DNA (with heat-treated DNA as control). Comparisons of growth, nitrate uptake, assimilatory nitrate reductase activity and nodulation of parent CB1809, NR-6 SmR NeoR and five transformant clones (Nar+) suggest that there may be considerable homology between the nar genes of R. japonicum CB1809 and N. muscorum.  相似文献   

7.
8.
Nitrate uptake and reduction are highly regulated processes. In many plant species, nitrate uptake is induced by nitrate, Little, however, is known about the genetic and molecular aspects of nitrate transport. Reduction of nitrate to ammonia is carried out by nitrate and nitrite reductases. Nitrate and light enhance expression of the nitrate and nitrite reductase genes in most species. Mutants have been selected and characterized to identify genes controlling nitrate reductase in several higher plant species. Six loci are known to control the synthesis or assembly of the molybdenum cofactor of nitrate reductase, xanthine dehydrogenase and aldehyde oxidase. The nitrate reductase apoenzyme is encoded by a single gene, except in allopolyploid species and in those species possessing both NADH-specific and NAD(P)H-bispecific nitrate reductases. Comparison of NADH-specific nitrate reductase amino acid sequences deduced from cloned genes reveals considerable sequence conservation in regions believed to encode the functional domains of nitrate reductase, but less conservation in the N-terminal and hinge regions of the enzyme. For both nitrate and nitrite reductases, sequence identity is greater among species of the same subclass than between Monocotyledoneae and Dicotyledoneae subclass species.  相似文献   

9.
10.
Seedlings of three genotypes of barley, Hordeum vulgare L.,cv. Winer, were grown in nutrient solutions for 12 d: (a) Wt,the wild type; (b) Chlo19 and (c) Chlo29, two nitrate reductase(NR) deficient nar-mutants. Nar-mutant plants grown in nitratedeveloped about 5–24% of NADH-NR (EC 1.6.6.1 [EC] .) activitylevel characteristic of the Wt. The NR in vitro assays in whichNADH or NADPH were used as electron donors showed that the twomutant lines contained a mixture of NADH-specific and NAD(P)H-bispecific(EC 1.6.6.2 [EC] .) NRs. Chlo19 had a very low level of MoCo activityas compared to Chlo29 and Wt. Chlo19 appeared to be mutatedin a MoCo gene rather than in the genes coding for the nitrateNR apoenzyme. NAD(P)H-NR was found in the shoots and roots of both mutantsbut only in the roots of Wt. Several aspects of the regulationof NADH and NAD(P)H specific NRs in plants of the barley cv.Winer genotypes are discussed. MoCo was a strong limiting factorfor NR biosynthesis in nitrate-fed plants of Chlo19, but lesslimited in N-starved and ammonium-fed plants. Biomass productionby the three genotypes was similar during first 12 d after germination,regardless of the level of NR detected in vitro. Mutant plantsmay be able to supply the nitrogen required for growth withonly 5–24% of the NR level of the WT. Key words: Hordeum vulgare, mutants, nitrate, nitrate reductase, molybdenum cofactor  相似文献   

11.
The Pseudomonas fluorescens YT101 gene narG, which encodes the catalytic alpha subunit of the respiratory nitrate reductase, was disrupted by insertion of a gentamicin resistance cassette. In the Nar(-) mutants, nitrate reductase activity was not detectable under all the conditions tested, suggesting that P. fluorescens YT101 contains only one membrane-bound nitrate reductase and no periplasmic nitrate reductase. Whereas N(2)O respiration was not affected, anaerobic growth with NO(2) as the sole electron acceptor was delayed for all of the Nar(-) mutants following a transfer from oxic to anoxic conditions. These results provide the first demonstration of a regulatory link between nitrate and nitrite respiration in the denitrifying pathway.  相似文献   

12.
Involvement of nitrate reductase and pyoverdine in the competitiveness of the biocontrol strain Pseudomonas fluorescens C7R12 was determined, under gnotobiotic conditions, in two soil compartments (bulk and rhizosphere soil), with the soil being kept at two different values of matric potential (-1 and -10 kPa). Three mutants affected in the synthesis of either the nitrate reductase (Nar(-)), the pyoverdine (Pvd(-)), or both (Nar(-) Pvd(-)) were used. The Nar(-) and Nar(-) Pvd(-) mutants were obtained by site-directed mutagenesis of the wild-type strain and of the Pvd(-) mutant, respectively. The selective advantage given by nitrate reductase and pyoverdine to the wild-type strain was assessed by measuring the dynamic of each mutant-to-total-inoculant (wild-type strain plus mutant) ratio. All three mutants showed a lower competitiveness than the wild-type strain, indicating that both nitrate reductase and pyoverdine are involved in the fitness of P. fluorescens C7R12. The double mutant presented the lowest competitiveness. Overall, the competitive advantages given to C7R12 by nitrate reductase and pyoverdine were similar. However, the selective advantage given by nitrate reductase was more strongly expressed under conditions of lower aeration (-1 kPa). In contrast, the selective advantage given by nitrate reductase and pyoverdine did not differ in bulk and rhizosphere soil, indicating that these bacterial traits are not specifically involved in the rhizosphere competence but rather in the saprophytic ability of C7R12 in soil environments.  相似文献   

13.
14.
Dissimilatory nitrate reductase (Nar) was solubilized and partially purified from the large particle (mitochondrial) fraction of the denitrifying fungus Fusarium oxysporum and characterized. Many lines of evidence showed that the membrane-bound Nar is distinct from the soluble, assimilatory nitrate reductase. Further, the spectral and other properties of the fungal Nar were similar to those of dissimilatory Nars of Escherichia coli and denitrifying bacteria, which are comprised of a molybdoprotein, a cytochrome b, and an iron-sulfur protein. Formate-nitrate oxidoreductase activity was also detected in the mitochondrial fraction, which was shown to arise from the coupling of formate dehydrogenase (Fdh), Nar, and a ubiquinone/ubiquinol pool. This is the first report of the occurrence in a eukaryote of Fdh that is associated with the respiratory chain. The coupling with Fdh showed that the fungal Nar system is more similar to that involved in the nitrate respiration by Escherichia coli than that in the bacterial denitrifying system. Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification.  相似文献   

15.
Construction in vitro of a cloned nar operon from Escherichia coli.   总被引:13,自引:8,他引:5       下载免费PDF全文
To clone the nar operon of Escherichia coli without an effective selection procedure for the nar+ phenotype, a strategy utilizing nar::Tn5 mutants was employed. Partial segments of the nar operon containing Tn5 insertions were cloned into plasmid pBR322 by using the transposon resistance character for selection. A hybrid plasmid was constructed in vitro from two of these plasmids and isolated by a procedure that involved screening a population of transformed nar(Ts) mutant TS9A for expression of thermal stable nitrate reductase activity. A detailed restriction site map of the resulting plasmid, pSR95, corresponded closely to the composite restriction endonuclease map deduced for the nar region from maps of the cloned nar::Tn5 fragments. When transformed with pSR95, wild-type strain PK27 overproduced the alpha, beta, and gamma subunits of nitrate reductase, although nitrate reductase activity was only slightly increased. The alpha and beta subunits were overproduced about 5- to 10-fold and accumulated mostly as an inactive aggregate in the cytoplasm; the gamma subunit overproduction was detected as a threefold increase in the specific content of cytochrome b555 in the membrane fraction. Functional nitrate reductase and the cytochrome spectrum associated with functional nitrate reductase were restored in the nar::Tn5 mutant EE1 after transformation with pSR95. Although the specific activity of nitrate reductase in this case was less than that of the wild type, both the alpha and beta subunits appeared to be overproduced in an inactive form. In both strains PK27(pSR95) and EE1(pSR95), the formation of nitrate reductase activity and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the demonstration that pSR95 contains a functional nor operon that encodes the alpha, beta, gamma subunits of nitrate reductase.  相似文献   

16.
The Neurospora crassa assimilatory nitrite reductase structural gene, nit-6, has been isolated. A cDNA library was constructed from poly(A)+ RNA isolated from Neurospora mycelia in which nitrate assimilation had been induced. This cDNA was ligated into lambda ZAP II (Stratagene) and amplified. This library was then screened with a polyclonal antibody specific for nitrite reductase. A total of six positive clones were identified. Three of the six clones were found to be identical via restriction digests, restriction fragment length polymorphism mapping, Southern hybridization, and some preliminary sequencing. One of these cDNA clones (pNiR-3) was used as a probe in Northern assays and was found to hybridize to a 3.5-kb poly(A)+ RNA whose expression is nitrate inducible and glutamine repressible in wild-type mycelia. pNiR-3 was used to probe an N. crassa genomic DNA library in phage lambda J1, and many positive clones were isolated. When five of these clones were tested for their ability to transform nit-6 mutants, one clone consistently generated many wild-type transformants. The nit-6 gene has been subcloned to generate pnit-6. The nit-6 gene has been sequenced and mapped; its deduced amino acid sequence exhibits considerable levels of homology to the sequences of Aspergillus sp. and Escherichia coli nitrite reductases. Several pnit-6 transformants have been propagated as homokaryons. These strains have been assayed for the presence of multiple copies of the nit-6 gene, as well as nitrite reductase activity.  相似文献   

17.
Seven known genes control Pseudomonas aeruginosa nitrate assimilation. Three of the genes, designated nas, are required for the synthesis of assimilatory nitrate reductase: nasC encodes a structural component of the enzyme; nasA and nasB encode products that participate in the biosynthesis of the molybdenum cofactor of the enzyme. A fourth gene (nis) is required for the synthesis of assimilatory nitrite reductase. The remaining three genes (ntmA, ntmB, and ntmC) control the assimilation of a number of nitrogen sources. The nas genes and two ntm genes have been located on the chromosome and are well separated from the known nar genes which encode synthesis of dissimilatory nitrate reductase. Our data support the previous conclusion that P. aeruginosa has two distinct nitrate reductase systems, one for the assimilation of nitrate and one for its dissimilation.  相似文献   

18.
The nar promoter of Escherichia coli, which is maximally induced under anaerobic conditions in the presence of nitrate, was characterized to see whether the nar promoter cloned onto pBR322 can be used as an inducible promoter. To increase the expression level, the nar promoter was expressed in E. coli where active nitrate reductase cannot be expressed from the nar operon on the chromosome. A plasmid with the lacZ gene expressing beta-galactosidase instead of the structural genes of the nar operon was used to simplify an assay of induction of the nar promoter. The following effects were investigated to find optimal conditions: methods of inducing the nar promoter, optimal nitrate and molybdate concentrations maximally inducing the nar promoter, the amount of expressed beta-galactosidase, and induction ratio (specific beta-galactosidase activity after maximal induction/specific beta-galactosidase activity before induction.)The following results were obtained from the experiments: induction of the nar promoter was optimal when E. coli was grown in the presence of 1% nitrate at the beginning of culture; expression of beta-galactosidase was not affected by molybdate; the induction ratio was maximal, approximately 300, when the overnight culture was grown in the flask for 2.5 h (OD(600) is congruent to 1.3) before being transferred to the fermentor; the amount of beta-galactosidase per cell and per medium volume was maximal when E. coli was grown under aerobic conditions to OD(600) = 1.7; then the nar promoter was induced under microaerobic conditions made by lowering dissolved oxygen level (DO) to 1-2%. After approximately 6 h of induction, OD(600) became 3.2 and specific beta-galactosidase activity became 36,000 Miller units, equivalent to 35% of total cellular proteins, which was confirmed from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Summary Ten nitrate reductase (NR)-deficient mutants have been characterized for their cross-reactivity against specific barley (Hordeum vulgare L.) nitrate reductase antibodies. The rabbit antibodies raised against the purified barley wild type (cv. Steptoe) enzyme quantitatively inactivate nitrate reductase in crude extracts. All nitrate-grown (induced) mutants show positive precipitin reaction against the antiserum by Ouchterlony double diffusion test and all have the ability to neutralize antisera in a NR protection assay. Under induced growth conditions, mutants Az 12, Az 23, Az 29 and Az 30 which have low NR associated catalytic activities also have the lowest level of antigenicity; mutants Az 13, Az 31, Az 33 and Az 34 have intermediate level of both NR associated catalytic activities and antigenicity, while mutants Az 28 and Az 32 have the highest level of both NR associated catalytic activities and antigenicity. Under noninduced growth conditions, all mutants except Az 12 contain detectable but very low levels of NR antigenicity. These results support the concept that these NR-deficient mutants with various levels of NR associated catalytic activities represent different mutation events at the loci coding the NR structural components.Abbreviations NR nitrate reductase - DTT dithiothreitol - FAD flavin adenine dinucleotide - BSA bovine serum albumin - NRCRM nitrate reductase cross-reacting materials Scientific Paper No. 5765. College of Agriculture Research Center, Washington State University, Pullman, Project Nos. 0233 and 0430. Supported in part by National Science Foundation Grant #PCM7807649, and U.S. Department of Agriculture CRGO Grant #7900536  相似文献   

20.
NAD(P)H:quinone oxidoreductases (NQOs) are flavoproteins that catalyze the oxidation of NADH or NADPH by various quinones and oxidation-reduction dyes. We have previously described a complementary DNA that encodes a dioxin-inducible cytosolic form of human NAD(P)H:quinone oxidoreductase (NQO1). In the present report we describe the nucleotide sequence and deduced amino acid sequence for a cDNA clone that is likely to encode a second form of NAD(P)H:quinone oxidoreductase (NQO2) which was isolated by screening a human liver cDNA library by hybridization with a NQO1 cDNA probe. The NQO2 cDNA is 976 nucleotides long and encodes a protein of 231 amino acids (Mr = 25,956). The human NQO2 cDNA and protein are 54% and 49% similar to human liver cytosolic NQO1 cDNA and protein, respectively. COS1 cells transfected with NQO2 cDNA showed a 5-7-fold increase in NAD(P)H:quinone oxidoreductase activity as compared to nontransfected cells when either 2,6-dichlorophenolindophenol or menadione was used as substrate. Western blot analysis of the expressed NQO1 and NQO2 cDNA proteins showed cross-reactivity with rat NQO1 antiserum, indicating that NQO1 and NQO2 proteins are immunologically related. Northern blot analysis shows the presence of one NQO2 mRNA of 1.2 kb in control and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treated human hepatoblastoma Hep-G2 cells and that TCDD treatment does not lead to enhanced levels of NQO2 mRNA as it does for NQO1 mRNA. Southern blot analysis of human genomic DNA suggests the presence of a single gene approximately 14-17 kb in length. The NQO2 gene locus is highly polymorphic as indicated by several restriction fragment length polymorphisms detected with five different restriction enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号