首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein product of the rodent neu oncogene, p185neu, is a tyrosine kinase with structural similarity to the epidermal growth factor receptor (EGFR). Transfection and subsequent overexpression of the human p185c-erbB-2 protein transforms NIH 3T3 cells in vitro. However, NIH 3T3 cells are not transformed by overexpressed rodent p185c-neu. NIH 3T3 transfectants overexpressing EGF receptors are not transformed unless incompletely transformed. Several groups have recently demonstrated EGF-induced, EGFR-mediated phosphorylation of p185c-neu. During efforts to characterize the interaction of p185c-neu with EGFR further, we created cell lines that simultaneously overexpress both p185c-neu and EGFR and observed that these cells become transformed. These observations demonstrate that two distinct, overexpressed tyrosine kinases can act synergistically to transform NIH 3T3 cells, thus identifying a novel mechanism that can lead to transformation.  相似文献   

2.
Cooperation between integrins and growth factor receptors plays an important role in the regulation of cell growth, differentiation, and survival. The function of growth factor receptor tyrosine kinases (RTKs) can be regulated by cell adhesion to extracellular matrix (ECM) even in the absence of ligand. We investigated the pathway involved in integrin-mediated RTK activation, using RON, the receptor for macrophage-stimulating protein. Adhesion of RON-expressing epithelial cells to ECM caused phosphorylation of RON, which depended on the kinase activity of both RON itself and c-Src. This conclusion is based on these observations: 1) ECM-induced RON phosphorylation was inhibited in cells expressing kinase-inactive c-Src; 2) active c-Src could phosphorylate immunoprecipitated RON from ECM-stimulated cells but not from unstimulated cells; and 3) ECM did not cause RON phosphorylation in cells expressing kinase-dead RON, nor could active c-Src phosphorylate RON immunoprecipitated from these cells. The data fit a pathway in which ECM-induced integrin aggregation causes both c-Src activation and RON oligomerization followed by RON kinase-dependent autophosphorylation; this results in RON becoming a target for activated c-Src, which phosphorylates additional tyrosines on RON. Integrin-induced epidermal growth factor receptor (EGFR) phosphorylation also depended on both EGFR and c-Src kinase activities. This sequence appears to be a general pathway for integrin-dependent growth factor RTK activation.  相似文献   

3.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

4.
Signal characteristics of G protein-transactivated EGF receptor.   总被引:24,自引:2,他引:22       下载免费PDF全文
The epidermal growth factor receptor (EGFR) tyrosine kinase recently was identified as providing a link to mitogen-activated protein kinase (MAPK) in response to G protein-coupled receptor (GPCR) agonists in Rat-1 fibroblasts. This cross-talk pathway is also established in other cell types such as HaCaT keratinocytes, primary mouse astrocytes and COS-7 cells. Transient expression of either Gq- or Gi-coupled receptors in COS-7 cells allowed GPCR agonist-induced EGFR transactivation, and lysophosphatidic acid (LPA)-generated signals involved the docking protein Gab1. The increase in SHC tyrosine phosphorylation and MAPK stimulation through both Gq- and Gi-coupled receptors was reduced strongly upon selective inhibition of EGFR function. Inhibition of phosphoinositide 3-kinase did not affect GPCR-induced stimulation of EGFR tyrosine phosphorylation, but inhibited MAPK stimulation, upon treatment with both GPCR agonists and low doses of EGF. Furthermore, the Src tyrosine kinase inhibitor PP1 strongly interfered with LPA- and EGF-induced tyrosine phosphorylation and MAPK activation downstream of EGFR. Our results demonstrate an essential role for EGFR function in signaling through both Gq- and Gi-coupled receptors and provide novel insights into signal transmission downstream of EGFR for efficient activation of the Ras/MAPK pathway.  相似文献   

5.
The neu receptor oncoprotein tyrosine kinase, capable of transforming cultured fibroblasts and causing mammary carcinomas in transgenic mice, carries a point mutation in its transmembrane domain and shows a constitutive tyrosine kinase activity. We analyzed the neu tyrosine kinase and its substrates in transfected NIH 3T3 fibroblasts by phosphotyrosine immunoblotting. Tyrosine phosphorylated proteins were similar but not identical in epidermal growth factor (EGF)-stimulated cells expressing the human EGF receptor (EGFR) or a chimeric EGFR/neu receptor but differed from phosphotyrosyl proteins constitutively expressed in neu oncogene-transformed cells. The neu oncoprotein in the latter cells was phosphorylated in tyrosine in a ligand-independent manner and had a shortened half-life in comparison with the normal neu protein. Tumor promoter pretreatment inhibited ligand-induced receptor tyrosine phosphorylation and decreased tyrosine phosphorylated neu oncoprotein. Prolonged pretreatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) also prevented the induction of immediate early growth factor-regulated genes in response to neu activation. Expression of the neu oncogene but not the protooncogene in NIH 3T3 cells was associated with enhanced levels of the jun and fos oncoproteins and loss of serum growth factor induction of immediate early mRNA responses. The constitutively activated neu oncoprotein tyrosine kinase thus deregulates cellular genomic responses to growth factors.  相似文献   

6.
The epidermal growth factor receptor (EGFR) is a multisited and multifunctional transmembrane glycoprotein with intrinsic tyrosine kinase activity. Upon ligand binding, the monomeric receptor undergoes dimerization resulting in kinase activation. The consequences of kinase stimulation are the phosphorylation of its own tyrosine residues (autophosphorylation) followed by association with and activation of signal transducers. Deregulation of signaling resulting from aberrant expression of the EGFR has been implicated in a number of neoplasms including breast, brain, and skin tumors. A mutant epidermal growth factor (EGF) receptor missing 267 amino acids from the exoplasmic domain is common in human glioblastomas. The truncated receptor (EGFRvIII/DeltaEGFR) lacks EGF binding activity; however, the kinase is constitutively active, and cells expressing the receptor are tumorigenic. Our studies revealed that the high kinase activity of the DeltaEGFR is due to self-dimerization, and contrary to earlier reports, the kinase activity per molecule of the dimeric DeltaEGFR is comparable to that of the EGF-stimulated wild-type receptor. Furthermore, the phosphorylation patterns of both receptors are similar as determined by interaction with a conformation-specific antibody and by phosphopeptide analysis. This eliminates the possibility that the defective down-regulation of the DeltaEGFR is due to its altered phosphorylation pattern as has been suggested previously. Interestingly, the receptor-receptor self-association is highly dependent on a conformation induced by N-linked glycosylation. We have identified four potential sites that might participate in self-dimerization; these sites are located in a domain that plays an important role in EGFR functioning.  相似文献   

7.
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.  相似文献   

8.
In accordance with our recent results obtained with cultured rat hepatocytes [Fujioka, T. & Ui, M. (2001) Eur. J. Biochem. 268, 25-34], epidermal growth factor (EGF) gave rise to transient tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-2), thereby activating the bound phosphatidylinositol 3-kinase in human epidermoid carcinoma A431 cells normally abundant in EGF receptors (EGFR) and Chinese hamster ovary (CHO) cells transfected with full-length EGFR. These actions of EGF, although much smaller in magnitude than those of insulin or IGF-I in the same cells, were accompanied by tyrosine phosphorylation of EGFR rather than insulin or IGF-I receptors, never observed in wild-type CHO cells expressing no EGFR, and totally inhibited by an inhibitor of EGFR kinase, AG1478, that was without effect on insulin or IGF-I actions. Recombinant IRS-1 was phosphorylated on tyrosines upon incubation with purified EGFR from A431 cells and 32P-labeled ATP. When CHO cells were transfected with C-terminal truncated EGFR lacking three NPXY motifs responsible for direct binding to phosphotyrosine-binding domains of IRSs, no effect of EGF could be observed. We suggest that tyrosine phosphorylation of IRS-1 or IRS-2 could mediate EGFR-induced activation of phosphatidylinositol 3-kinase in mammalian cells.  相似文献   

9.
The present study was designed to investigate whether large conductance Ca2+‐activated K+ (BK) channels were regulated by epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase. BK current and channel tyrosine phosphorylation level were measured in BK‐HEK 293 cells expressing both functional α‐subunits and the auxiliary β1‐subunits using electrophysiology, immunoprecipitation and Western blotting approaches, respectively, and the function of rat cerebral basilar arteries was determined with a wire myography system. We found that BK current in BK‐HEK 293 cells was increased by the broad spectrum protein tyrosine kinase (PTK) inhibitor genistein and the selective EGFR tyrosine kinase inhibitor AG556, one of the known tyrphostin. The effect of genistein or AG556 was antagonized by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. On the other hand, orthovanadate or EGF decreased BK current, and the effect was counteracted by AG556. The tyrosine phosphorylation level of BK channels (α‐ and β1‐subunits) was increased by EGF and orthovanadate, while decreased by genistein and AG556, and the reduced tyrosine phosphorylation of BK channels by genistein or AG556 was reversed by orthovanadate. Interestingly, AG556 induced a remarkable enhancement of BK current in rat cerebral artery smooth muscle cells and relaxation of pre‐contracted rat cerebral basilar arteries with denuded endothelium, and these effects were antagonized by the BK channel blocker paxilline or orthovanadate. These results demonstrate that tyrosine phosphorylation of BK channels by EGFR kinase decreases the channel activity, and inhibition of EGFR kinase by AG556 enhances the channel activity and dilates rat cerebral basilar arteries.  相似文献   

10.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is an endosomal protein essential for the efficient sorting of activated growth factor receptors into the lysosomal degradation pathway. Hrs undergoes ligand-induced tyrosine phosphorylation on residues Y329 and Y334 downstream of epidermal growth factor receptor (EGFR) activation. It has been difficult to investigate the functional roles of phosphoHrs, as only a small proportion of the cellular Hrs pool is detectably phosphorylated. Using an HEK 293 model system, we found that ectopic expression of the protein Cbl enhances Hrs ubiquitination and increases Hrs phosphorylation following cell stimulation with EGF. We exploited Cbl's expansion of the phosphoHrs pool to determine whether Hrs tyrosine phosphorylation controls EGFR fate. In structure-function studies of Cbl and EGFR mutants, the level of Hrs phosphorylation and rapidity of apparent Hrs dephosphorylation correlated directly with EGFR degradation. Differential expression of wild-type versus Y329,334F mutant Hrs in Hrs-depleted cells revealed that one or both tyrosines regulate ligand-dependent Hrs degradation, as well as EGFR degradation. By modulating Hrs ubiquitination, phosphorylation, and protein levels, Cbl may control the composition of the endosomal sorting machinery and its ability to target EGFR for lysosomal degradation.  相似文献   

11.
Oxidative stress has been implicated in the pathogenesis of inflammatory diseases of airways. Here we show that oxidative stress causes ligand-independent activation of epidermal growth factor receptors (EGFR) and subsequent activation of mitogen-activated protein kinase kinase (MEK)-p44/42 mitogen-activated protein kinase (p44/42mapk), resulting in mucin synthesis in NCI-H292 cells. Exogenous hydrogen peroxide and neutrophils activated by IL-8, FMLP, or TNF-alpha increased EGFR tyrosine phosphorylation and subsequent activation of p44/42mapk and up-regulated the expression of MUC5AC at both mRNA and protein levels in NCI-H292 cells. These effects were blocked by selective EGFR tyrosine kinase inhibitors (AG1478, BIBX1522) and by a selective MEK inhibitor (PD98059), whereas a selective platelet-derived growth factor receptor tyrosine kinase inhibitor (AG1295), a selective p38 MAPK inhibitor (SB203580), and a negative compound of tyrosine kinase inhibitors (A1) were without effect. Neutrophil supernatant-induced EGFR tyrosine phosphorylation, activation of p44/42mapk, and MUC5AC synthesis were inhibited by antioxidants (N-acetyl-cysteine, DMSO, dimethyl thiourea, or superoxide dismutase); neutralizing Abs to EGFR ligands (EGF and TGF-alpha) were without effect, and no TGF-alpha protein was found in the neutrophil supernatant. In contrast, the EGFR ligand, TGF-alpha, increased EGFR tyrosine phosphorylation, activation of p44/42mapk, and subsequent MUC5AC synthesis, but these effects were not inhibited by antioxidants. These results implicate oxidative stress in stimulating mucin synthesis in airways and provide new therapeutic approaches in airway hypersecretory diseases.  相似文献   

12.
13.
Phosphorylation of the MAPK isoform ERK by G protein-coupled receptors involves multiple signaling pathways. One of these pathways entails growth factor receptor transactivation followed by ERK activation. This study demonstrates that a similar signaling pathway is used by the mu-opioid receptor (MOR) expressed in HEK293 cells and involves calmodulin (CaM). Stimulation of MOR resulted in both epidermal growth factor receptor (EGFR) and ERK phosphorylation. Data obtained with inhibitors of EGFR Tyr kinase and membrane metalloproteases support an intermediate role of EGFR activation, involving release of endogenous membrane-bound epidermal growth factor. Previous studies had demonstrated a role for CaM in opioid signaling based on direct CaM binding to MOR. To test whether CaM contributes to EGFR transactivation and ERK phosphorylation by MOR, we compared wild-type MOR with mutant K273A MOR, which binds CaM poorly, but couples normally to G proteins. Stimulation of K273A MOR with [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin (10-100 nm) resulted in significantly reduced ERK phosphorylation. Furthermore, wild-type MOR stimulated EGFR Tyr phosphorylation 3-fold more than K273A MOR, indicating that direct CaM-MOR interaction plays a key role in the transactivation process. Inhibitors of CaM and protein kinase C also attenuated [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin-induced EGFR transactivation in wild-type (but not mutant) MOR-expressing cells. This novel pathway of EGFR transactivation may be shared by other G protein-coupled receptors shown to interact with CaM.  相似文献   

14.
Li Y  Li M  Xing G  Hu Z  Wang Q  Dong C  Wei H  Fan G  Chen J  Yang X  Zhao S  Chen H  Guan K  Wu C  Zhang C  He F 《The Journal of biological chemistry》2000,275(48):37443-37447
Hepatopoietin (HPO) is a novel human hepatotrophic growth factor, which specifically stimulates proliferation of cultured primary hepatocytes in vitro and liver regeneration after liver partial hepatectomy in vivo. Recently, the identification of the mitogenic effect of HPO on hepatoma cell lines and the existence of HPO-specific receptors indicate that HPO acts via its specific cell surface receptor. However, the molecular mechanism of HPO action is not fully elucidated. In this report, we examined the signal transduction events induced by HPO in hepatoma cell line (HepG2). Our results demonstrated that HPO induces phosphorylation of mitogen-activated protein kinase kinase and mitogen-activated protein kinase (MAPK) in a rapid and transient manner. HPO stimulates tyrosine phosphorylation of epidermal growth factor receptor (EGFR). Furthermore, we observed that both MAPK activation and the mitogenic effect of HPO on HepG2 cells were completely blocked by AG1478, a specific inhibitor of EGFR tyrosine kinase activity. However, the effects of HPO were not antagonized by an EGFR-blocking antibody, mAb528, which blocks the interaction between epidermal growth factor and EGFR, indicating that stimulation of tyrosine phosphorylation of EGFR by HPO was not mediated by epidermal growth factor. In contrast, genistein, a general tyrosine kinase inhibitor, significantly attenuated the tyrosine phosphorylation of EGFR in response to HPO. In conclusion, our results suggest that tyrosine phosphorylation of EGFR may play a critical role in MAPK activation and mitogenic stimulation by HPO.  相似文献   

15.
Breast cancers show a lack of response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), despite 30% of tumors expressing EGFR. The mechanism of this resistance is unknown; however, we have recently shown that Met kinase activity compensates for loss of EGFR kinase activity in cell culture models. Met has been implicated in the pathogenesis of breast tumors and therefore may cooperate with EGFR for tumor growth. Here we have found that EGFR phosphorylation and cell proliferation is in part regulated by Met expression. In addition, we found that Met constitutive phosphorylation occurred independent of the Met ligand hepatocyte growth factor (HGF). Ligand-independent Met phosphorylation is mediated by Met amplification, mutation, or overexpression and by Met interaction with other cell surface molecules. In SUM229 breast cancer cells, we found that Met was not amplified or mutated, however it was overexpressed. Met overexpression did not directly correlate with ligand-independent Met phosphorylation as the SUM229 cell line was the only Met expressing breast cancer line with constitutive Met phosphorylation. Interestingly, Met expression did correlate with EGFR expression and we identified an EGFR/Met complex via co-immunoprecipitation. However, we only observed Met constitutive phosphorylation when c-Src also was part of this complex. Ligand-independent phosphorylation of Met was decreased by down regulating EGFR expression or by inhibiting c-Src kinase activity. Lastly, inhibiting EGFR and Met kinase activities resulted in a synergistic decrease in cell proliferation, supporting the idea that EGFR and Met functionally, as well as physically interact in breast cancer cells to regulate response to EGFR inhibitors.  相似文献   

16.
The amplitude of signaling evoked by stimulation of G protein-coupled receptors may be controlled in part by the GTPase accelerating activity of the regulator of G protein signaling (RGS) proteins. In turn, subcellular targeting, protein-protein interactions, or post-translational modifications such as phosphorylation may shape RGS activity and specificity. We found previously that RGS16 undergoes tyrosine phosphorylation on conserved tyrosine residues in the RGS box. Phosphorylation on Tyr(168) was mediated by the epidermal growth factor receptor (EGFR). We show here that endogenous RGS16 is phosphorylated after epidermal growth factor stimulation of MCF-7 cells. In addition, p60-Src or Lyn kinase phosphorylated recombinant RGS16 in vitro, and RGS16 underwent phosphorylation in the presence of constitutively active Src (Y529F) in EGFR(-) CHO-K1 cells. Blockade of endogenous Src activity by selective inhibitors attenuated RGS16 phosphorylation induced by pervanadate or receptor stimulation. Furthermore, the rate of RGS16 degradation was reduced in cells expressing active Src or treated with pervanadate or a G protein-coupled receptor ligand (CXCL12). Induction of RGS16 tyrosine phosphorylation was associated with increased RGS16 protein levels and enhanced GAP activity in cell membranes. These results suggest that Src mediates RGS16 tyrosine phosphorylation, which may promote RGS16 stability.  相似文献   

17.
The epidermal growth factor receptor (EGFR) can be activated by both direct ligand binding and cross-talk with other molecules, such as integrins. This integrin-mediated cross-talk with growth factor receptors participates in regulating cell proliferation, survival, migration, and invasion. Previous studies have shown that ligand-dependent EGFR activation is inhibited by GM3, the predominant ganglioside of epithelial cells, but the effect of GM3 on ligand-independent, integrin-EGFR cross-talk is unknown. Using a squamous carcinoma cell line we show that endogenous accumulation of GM3 disrupts the ligand-independent association of the integrin beta1 subunit with EGFR and results in inhibition of cell proliferation. Consistently, endogenous depletion of GM3 markedly increases the association of EGFR with tyrosine-phosphorylated integrin beta1 and promotes cell proliferation. The ligand-independent stimulation of EGFR does not require focal adhesion kinase phosphorylation or cytoskeletal rearrangement. Stimulation of EGFR and mitogen-activated protein kinase signaling by GM3 depletion involves the phosphorylation of EGFR at tyrosine residues 845, 1068, and 1148 but not 1086 or 1173. The specific blockade of phosphorylation at Tyr-845 with Src family kinase inhibition and at Tyr-1148 with phosphatidylinositol 3-kinase inhibition suggests that GM3 inhibits integrin-induced, ligand-independent EGFR phosphorylation (cross-talk) through suppression of Src family kinase and phosphatidylinositol 3-kinase signaling.  相似文献   

18.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

19.
The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts.  相似文献   

20.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号