首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Interactions between a large community of vertebrate frugivore-granivores (including 7 species of large canopy birds, 19 species of rodents, 7 species of ruminants, and 6 species of monkeys), and 122 fruit species they consume, were studied for a year in a tropical rainforest in Gabon.The results show how morphological characters of fruits are involved in the choice and partitioning of the available fruit spectrum among consumer taxa. Despite an outstanding lack of specificity between fruit and consumer species, consideration of simple morphological traits of fruits reveals broad character syndromes associated with different consumer taxa. Competition between distantly related taxa that feed at the same height is far more important than has been previously supposed. The results also suggest how fruit characters could have evolved under consumer pressure as a result of consumer roles as dispersers or seed predators. Our analyses of dispersal syndromes show that fruit species partitioning occurs more between mammal taxa than between mammals and birds. There is thus a bird-monkey syndrome and a ruminant-rodent-elephant syndrome. The bird-monkey syndrome includes fruit species on which there is no pre-dispersal seed predation. These fruits (berries and drupes) are brightly colored, have a succulent pulp or arillate seeds, and no protective seed cover. The ruminant-rodent-elephant syndrome includes species for which there is pre-dispersal predation. These fruits (all drupes) are large, dull-colored, and have a dry fibrous flesh and well-protected seeds.  相似文献   

2.
Guevara  S.  Laborde  J. 《Plant Ecology》1993,(1):319-338
The tropical rain forest landscape has been transformed to a mosaic composed of patches of crops, secondary vegetation and remnant forest fragments of different shapes and sizes. Isolation of patches and fragments is a critical issue in the maintenance of local species diversity. In this study we focus on the dispersal of propagules by birds to understant the movement of plants between landscape components. Seed deposition and the behavior of frugivorous birds were monitored at four isolated fig trees (Ficus yoponensis and F. aurea) in man-made pastures. Seed deposition was measured by trapping seeds under canopy trees for six months and by direct observation of bird visits to the four trees for one year. Seed deposition densities were 465, 614, 632 and 1097 seeds/m2 accumulated over six months under each of the four trees. We recorded 8268 seeds of 107 species under the trees, among them, 6726 seeds (81%) were of 56 species dispersed by vertebrate frugivores. Seeds of tree species accounted for 26% of the total species. Seventy-three species of birds perched in the observed trees, and 3344 visits were made by 47 species of frugivores. Frugivorous birds occurred in two groups: resident species nesting in the pastures and resident species nesting elsewhere. Propagule exchange between landscape components is clearly influenced by the behavior of these two groups. Structure and dynamics of the landscape depend on plant species availability within the mosaic. This availability is high and suggests possibilities for the management of the local species diversity of tropical rain forests.  相似文献   

3.
A hierarchical approach to restoration planning at the regional, catchment and local scales is proposed and examined. Restoration projects limited to a local scale and focused on habitat improvement for individual species ended in failure, which has led to the recognition that there is a need for ecosystem-based management at the landscape level. The first landscape-level restoration in Japan is under way in the Kushiro and Shibetsu River Basins, in northern Japan. However, public consensus on these large-scale restoration projects has not yet matured and there are very few projects that have progressed even as far as mapping to classify intact and disturbed ecosystems. Classification of habitat quality using physical and biological indicators appears to be the core element of analysis of ecological degradation at the regional scale (100–1,000 km2). This mass-screening process is critical to identify areas in potential need of restoration. The causes and mechanisms of ecosystem degradation are then examined at the catchment scale (10–100 km2) by linking material flows and habitat conditions. Direct environmental gradient analysis is useful to determine cause and effect relationships between species and habitat quality. Finally, we recommend implementation of field experiments with a clear hypothesis at the local scale (0.01–1 km2). At this stage, key variables causing degradation of the target ecosystem are manipulated to verify the hypothesis. Based on the results of local-scale analyses, the possibility of restoration success can be evaluated, which directs us to practical schemes for future restoration projects at larger scales.  相似文献   

4.
Biological diversity conservation within natural reserves has been prioritized, but conservation efforts outside protected areas (where most human activities take place) have been very little considered. In this scenario, an alternative agricultural practice that may reduce the impacts of fragmentation in outer landscapes is a perforation process, which involves conservation in agricultural fields surrounded by continuous forests. Such practices enhance the positive impact of ecological services on fields. In this study we analyzed the biological diversity state in perforation fields and their surrounding forests. The analysis was done using dung beetles as biological indicators. A nested pattern in dung beetles distribution was found, which ordered the surrounding continuous forest sites as the ones with the highest species richness, followed by the perforation fields, and placed the fragmentation practice fields (continuous agricultural fields surrounding forest patches) with the lowest one. Indicator species for perforation fields and surrounding continuous forests were chosen. In general, perforation practice fields differed in composition, based upon functional groups richness and identity; it also contained a higher species richness than the fragmentation practice. Agricultural practices that enhance biological diversity conservation such as perforation, should be recommended and considered in natural resource management by local communities in order to take advantage of ecological services that otherwise may be gradually lost.  相似文献   

5.
6.
We studied the influence of avian seed dispersal on the structuring of genetic diversity in a population of a tropical tree, Ocotea tenera (Lauraceae). The seeds of O. tenera are principally dispersed by four, relatively specialized, fruit-eating bird species (emerald toucanets, keel-billed toucans, resplendent quetzals, and three-wattled bellbirds). We found high genetic diversity within the overall population and significant, nonrandom structuring of that diversity among subpopulations. Subpopulations contained members of several sibling groups, and most saplings within subpopulations were shown not to be the progeny of adult trees within the same subpopulation. Our data indicate that O. tenera subpopulations are founded with several seeds from few maternal families, and that this mode of establishment is an important determinant of population genetic architecture.  相似文献   

7.
8.
Post‐dispersal seed predation is a crucial phenomenon for plant recruitment, and its incidence can be hypothesized to increase in ecologically and geographically marginal populations of threatened species, such as yew (Taxus baccata). Here we examine the among‐ and within‐population patterns of seed consumption by rodents and evaluate to what extent they are linked to marginality in Mediterranean low‐density yew stands. Among populations we tested: (i) whether the rates of seed predation found in our marginal sites were consistently higher than in populations from core regions; (ii) within populations we evaluated whether rodents preferred microhabitats with greater seed availability (beneath female yew trees) or with lower predation risk (shrubs) in two seeding seasons (fall–winter 2005 and 2006). Predation rates were extremely high (92.5%) and they were well above values reported for core populations (65.4%), to the extent that rodents almost completely depleted the experimental seeds in all populations and years. Our expectation of lower predation rates with decreasing vegetation cover was also confirmed for all years and populations, suggesting that rodent foraging was risk‐sensitive. This microhabitat effect outweighed the effect of seed availability under female yew trees, implying also that rodents selectively consumed the most valuable seeds in terms of their recruitment prospects. Overall, our results suggest that the mechanisms underlying seed depletion and its demographic consequences are linked to the effects of reduced yew performance in ecologically marginal habitats.  相似文献   

9.
10.
Connectivity is a key concept of landscape ecology as it relates to flows and movements of organisms as driven by landscape structure. More and more aspects of landscape heterogeneity are considered in measuring connectivity, as the diversity of crops in agricultural landscapes. In this paper, we explored the value of considering changes and cumulated effects of connectivity over time. As an example, we analysed connectivity among patches influenced by maize over 7 years in an agricultural landscape in Brittany, France.Clear temporal patterns appeared: maize is concentrated in certain parts of the landscape, but over the period the whole area, 70% of the landscape, used for maize was connected. Instead of discrete patches, maize may produce large clusters allowing movement from patch to patch from year to year. This reinforces the importance of understanding land use allocation rules within farms and landscapes to evaluate the ecological effects of agriculture.  相似文献   

11.
Green PT  O'Dowd DJ  Lake PS 《Oecologia》2008,156(2):373-385
The influence of keystone consumers on community structure is frequently context-dependent; the same species plays a central organising role in some situations, but not others. On Christmas Island, in the Indian Ocean, a single species of omnivorous land crab, Gecarcoidea natalis, dominates the forest floor across intact rainforest. We hypothesised that this consumer plays a key role in regulating seedling recruitment and in controlling litter dynamics on the island, independent of the type of vegetation in which it occurred. To test this hypothesis, we conducted crab exclusion experiments in two forest types on the island and followed the dynamics of seedling recruitment and litter processing for six years. To determine if these effects were likely to be general across the island, we compared land crab densities and seedling abundance and diversity at ten sites across island rainforest. Surveys across island rainforest showed that seedlings of species susceptible to predation by land crabs are consistently rare. Abundance and diversity of these species were negatively correlated to red crab abundance. Although red land crabs may be important determinants of seedling recruitment to the overstorey, differences in overstorey and seedling composition at the sites suggests that recruitment of vulnerable trees still occurs at a temporal scale exceeding that of this study. These “windows” of recruitment may be related to infrequent events that reduce the effects of land crabs. Our results suggest that unlike the context dependence of most keystone consumers in continental systems, a single consumer, the red land crab, consistently controls the dynamics of seedling recruitment across this island rainforest.  相似文献   

12.
Hornbills (Bucerotidae) are widely regarded as important seed dispersers in tropical forests in Africa and Asia. We investigated how the roosting behavior of wreathed hornbills (Aceros undulatus) influences seed deposition and seedling survival at a roost site in a moist evergreen forest of Khao Yai National Park, Thailand. Fallen fruits and seeds were collected in traps that were placed around a roosting site for 14 months, and seedlings were monitored in adjacent quadrats for 3 years. Seedfall and seedlings of species represented in the hornbill diet occurred at significantly higher densities in the traps and quadrats located beneath the crown of the roosting tree than in those located beyond the crown. With the exception of Cinnamomum subavenium, the seeds and seedlings of most diet species rarely survived beyond the first year. The quality of hornbill dispersal to this roosting site may be poor due to the highly concentrated seedfall, which results in high seed and seedling mortality. However, the number of seeds deposited by each hornbill each day at roosting sites is relatively low. Wreathed hornbills are primarily scatter dispersers during the day and probably serve as agents of seed dispersal in the moist evergreen forest of Khao Yai.  相似文献   

13.
Buffer zones along rivers and streams can provide water quality services by filtering nutrients, sediment and other contaminants from the surface. Redundancy analysis was used to determine the influence of the landscape pattern at the entire catchment scale and at multiple buffer zone scales (100 m, 300 m, 500 m, 1000 m and 1500 m) on the water quality in a highly urbanised watershed. Change-point analysis was further applied to estimate the specific locations along a gradient of landscape metric that result in a sudden change in the water quality variable. The landscape characteristics for 100 m buffer zones appeared to have a slightly greater influence on the water quality than the entire catchment. The patch density of urban land and the large patch index of water were recognised as the dominant variables influencing the water quality for a 100 m buffer zone. The result of change-point analysis indicated key interval values of the two landscape metrics within the 100 m buffer zone. When the patch density of urban land was >30–40 n/100 ha and the largest patch index of water was >2.5–3.5%, the watershed water quality appeared to be better protected.  相似文献   

14.
Tree planting in the tropics is conducted for a number of reasons including carbon sequestration, but often competes with increasingly scarce water resources. The basics of forest and water relations are frequently said to be well understood but there is a pressing need to better understand and predict the hydrological effects of land‐use and climate change in the complex and dynamic landscapes of the tropics. This will remain elusive without the empirical data required to feed hydrological process models. It is argued that the current state of knowledge is confused by too broad a use of the terms ‘forest’ and ‘(af)forestation’, as well as by a bias towards using data generated mostly outside the tropics and for nondegraded soil conditions. Definitions of forest, afforestation and reforestation as used in the climate change community and their application by land and water managers need to be reconciled.  相似文献   

15.
Over the past decade an increasing amount of research has sought to understand how the diversity of species in an ecosystem can influence fluxes of biologically important materials, such as the decomposition of organic matter and recycling of nutrients. Generalities among studies have remained elusive, perhaps because experimental manipulations have been performed at relatively small spatial scales where site-specific variation generates patterns that appear idiosyncratic. One approach for seeking generality is to perform parallel experiments at different sites using an identical species pool. Here we report results from a study where we manipulated the diversity of leaf litter from the same six dominant tree species in the litter layer of three forested ecosystems. These ecosystems spanned a 300 km latitudinal transect in Wisconsin, USA, and were characterized by a large gradient in temperature and moisture, and thus, rates of decomposition. After allowing combinations of one, two, four, and six species of leaf litter to decompose for 1 year, we found that increasing leaf litter richness led to slower rates of decomposition and higher fractions of nitrogen lost from litter. Across all sites, climate and initial litter chemistry explained more of the variation in decomposition rates than did litter richness. Effects of leaf litter diversity were non-additive, meaning they were greater than expected from the impacts of individual species, and appeared to be strongly influenced by the presence/absence of just 1–2 species (Tilia americana and Acer saccharum). The rate of decomposition of these two species was highly site-specific, which led to strong negative effects of litter richness only being observed at the southernmost sites where T. americana and A. saccharum decomposed more quickly. In contrast, litter diversity increased nitrogen loss at the northernmost sites where decomposition of T. americana was notably slowed. Our study shows that species diversity affected at least one of the two litter processes at each site along this 300-km gradient, but the exact nature of these effects were spatially variable because the performance of individual species changed across the heterogeneous landscape.  相似文献   

16.
Summary Although insects are known to be important seed predators in most terrestrial forests, their role in marine tidal (mangrove) forests has not been examined. Surveys at 12 sites in tropical Australia showed that between 3.1 and 92.7 percent of the seeds or propagules of 12 mangrove tree species had been attacked by insects. Seeds/propagules of six species (Avicennia marina, Bruguiera gymnorrhiza, B. parviflora, Heritiera littoralis, Xylocarpus australasicus and X. granatum) showed consistently high (>40%) levels of insect damage. Greater than 99% of H. littoralis seeds were attacked by insect predators. The survival and subsequent growth in height and biomass of insect-damaged and non-damaged control seeds/propagules of eight mangrove species were compared in shadehouse experiments. Mangrove species fell into 4 groups with regard to the effect of insect predators on their seeds and seedlings. Xylocarpus australasicus and X. granatum had significantly decreased survival (X 48 and 70%) and growth in height (X 61 and 96%) and biomass (X 66 and 85%). Bruguiera parviflora showed decreased survival (X 59%), but there was no effect of insects on the growth of surviving propagules. In contrast, there was no effect of insect damage on the survival of seedlings of Avicennia marina and Bruguiera exaristata, but decreased growth in height (X 22 and 25%) and biomass (X 22 and 26%). Survival and growth of seedlings of Rhizophora stylosa and Bruguiera gymnorrhiza were not affected. The influence of insect seed predators on the survival and growth of seeds of mangrove species in forests will depend on the relative abundance of seed-eating crabs and intertidal position in mangrove forests.This is Contribution No 499 from the Australian Institute of Marine Science  相似文献   

17.
Bowie RC 《Molecular ecology》2011,20(9):1799-1802
It is often assumed that species which exhibit a greater propensity for dispersal are less susceptible to the impacts of habitat fragmentation; however, a growing body of literature suggests that such generalizations should be carefully evaluated as not all species appear to be equally sensitive to fragmentation. In this issue of Molecular Ecology, Callens et al. (2011) take an innovative approach to compare contemporary estimates of dispersal from an extensive mark-recapture and patch occupancy data set with historical estimates derived from multilocus population genetic models for seven sympatric forest-dependent species in the Taita Hills, Africa. As has been observed for forest-dependent species from the Amazon, populations of sedentary species were more strongly differentiated and clustered when compared to those of more dispersive taxa. The most intriguing result recovered though, was that the five species with similar historical estimates of gene flow (dispersal) differed substantially in their contemporary dispersal rates, suggesting that for some species the propensity for dispersal has decreased over time. As a consequence, the authors suggest that post-fragmentation estimates of dispersal on their own may not be the best predictors of how habitat fragmentation could affect forest-dependent animal communities.This work significantly advances our understanding of the dynamics of habitat fragmentation and makes a strong case for the need to integrate data on historical processes with contemporary data.  相似文献   

18.
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing decreased animal-dispersed tree abundance in overhunted forests contradict demographic models which predict minimal sensitivity of tree population growth rate to early life stages. One resolution to this discrepancy is that seed dispersal determines spatial aggregation, which could have demographic consequences for all life stages. We tested the impact of dispersal loss on population viability of a tropical tree species, Miliusa horsfieldii, currently dispersed by an intact community of large mammals in a Thai forest. We evaluated the effect of spatial aggregation for all tree life stages, from seeds to adult trees, and constructed simulation models to compare population viability with and without animal-mediated seed dispersal. In simulated populations, disperser loss increased spatial aggregation by fourfold, leading to increased negative density dependence across the life cycle and a 10-fold increase in the probability of extinction. Given that the majority of tree species in tropical forests are animal-dispersed, overhunting will potentially result in forests that are fundamentally different from those existing now.  相似文献   

19.
This paper is an attempt to outline a protocol for animal diversity census and evaluation aimed for areas in view of landscape planning of territories of hundred square kilometres and more, that may work utilising different faunal groups and be anyway useful at various scales. Many papers are addressed to elaborate tools for landscape planning starting from biodiversity evaluation and butterflies are often utilised because of their sensitivity to landscape modifications. In this work, the biodiversity evaluation has been performed using three hierarchically linked landscape units at micro-, meso- and macroscale. Being species diversity values often inadequate to define the conservation interest of a landscape portion, more importance has been given to which species compose the species assemblages. A community vulnerability Index was coded and used for evaluating potential consequences of human disturbance on butterfly assemblages. Forty-four year samples were gained by visual census in the Sila Greca, Southern Italy, on an area of approximately 520 square kilometres. During 5 years work, 2,535 specimens and 94 species were recorded, equal to 75.8% of the whole Calabrian fauna. Four vulnerability levels have been established and used for mapping butterfly assemblage vulnerability in the area, starting from a vegetation map. Species richness was found somewhat contradictory at micro-scale, where the community vulnerability Index gives a sounder approach. S diversity gives a more reliable picture of naturalness at meso-scale, a level we identified with the “ecotope”. At this more “geomorphic” scale level, biological functions reflected by butterfly assemblages revealed to be clearly linked to seral processes. Similarity analysis results show that the ecotope species richness, here called “eta-diversity”, could be an useful measure of zoological landscape (faunation) potentialities.  相似文献   

20.
Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号