首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing decreased animal-dispersed tree abundance in overhunted forests contradict demographic models which predict minimal sensitivity of tree population growth rate to early life stages. One resolution to this discrepancy is that seed dispersal determines spatial aggregation, which could have demographic consequences for all life stages. We tested the impact of dispersal loss on population viability of a tropical tree species, Miliusa horsfieldii, currently dispersed by an intact community of large mammals in a Thai forest. We evaluated the effect of spatial aggregation for all tree life stages, from seeds to adult trees, and constructed simulation models to compare population viability with and without animal-mediated seed dispersal. In simulated populations, disperser loss increased spatial aggregation by fourfold, leading to increased negative density dependence across the life cycle and a 10-fold increase in the probability of extinction. Given that the majority of tree species in tropical forests are animal-dispersed, overhunting will potentially result in forests that are fundamentally different from those existing now.  相似文献   

2.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

3.
Understanding the mutualisms between frugivores and plants is essential for developing successful forest management and conservation strategies, especially in tropical rainforests where the majority of plants are dispersed by animals. Gibbons are among the most effective seed dispersers in South East Asia's tropical forests, but are also one of the highly threatened arboreal mammals in the region. Here we studied the seed dispersal of the Pacific walnut (Dracontomelon dao), a canopy tree which produces fruit that are common in the diet of the endangered southern yellow-cheeked crested gibbon (Nomascus gabriellae). We found that gibbons were the most effective disperser for this species; they consumed approximately 45% of the fruit crop, which was four times more than that consumed by macaques – the only other legitimate disperser. Gibbons tracked the temporal (but not spatial) abundance of ripe fruits, indicating this fruit was a preferred species for the gibbon. Both gibbons and macaques dispersed the majority (>90%) of the seeds at least 20 m away from parent crowns, with mean dispersal distances by gibbons measuring 179.3 ± 98.0 m (range: 4–425 m). Seeds defecated by gibbons germinated quicker and at greater rates than seeds spat by macaques, or in undispersed fruits. Gibbon-dispersed seeds were also more likely to be removed by unknown seed predators or unknown secondary dispersers. Overall, gibbons play a key role in the regeneration of the Pacific walnut. Our findings have significant implications both for the management of the Pacific walnut tree dominating tropical rainforest as well as the reintroduction program of the Southern yellow-cheeked crested gibbon.  相似文献   

4.
The introduction of carnivorous mammals has led many native island species to extinction. In the Balearic Islands, the introduction of carnivorous mammals in the main islands has contributed to the extinction of the endemic lizard Podarcis lilfordi, which is an important seed disperser of many plant species. One of the introduced mammals, Martes martes (pine marten), is also known to disperse seeds and may replace the native lizard in this role in islands. However, little is known on the patterns of seed dispersal by these two different species and their possible implications for plant regeneration ability and population structure. We have compared the quality of seed deposition provided by both to the vulnerable Mediterranean shrub Cneorum tricoccon, by studying the pattern of seed distribution among sites generated by both dispersers as well as the suitability of those sites for seedling emergence and establishment. The study was carried out in two types of habitats (coastal shrublands and pine forests) and two islands (Mallorca and Dragonera). Lizards and mammals showed contrasting patterns of seed deposition and, where lizards were absent, mammals played their role as seed dispersers in pine forests but not in coastal shrublands. The lack of seed dispersal in the coastal shrubland seriously limits recruitment, by concentrating seeds under conspecifics and hindering colonisation opportunities, marking a long-term trend towards decline. The introduced predator replaces the native seed disperser in its service where it has gone extinct, although with important differences in the dispersal service provided.  相似文献   

5.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

6.
Forest fragmentation, reduced forest cover, and hunting pressure are the main threats affecting animal‐mediated seed dispersal. However, their combined effects on seed dispersal rates have been simultaneously investigated only rarely, and never in Africa. We aimed to disentangle the effects of forest cover, hunting pressure, frugivore abundance, and fruit availability at the local and landscape scales on the seed dispersal rates of Staudtia kamerunensis (Myristicaceae). To estimate the percentages of seed dispersal failure (undispersed seeds), we quantitated fruit remains below fruiting trees distributed across five contrasting sites in a semi‐natural forest‐savanna mosaic in the Democratic Republic of Congo. We used statistical analyses accounting for spatial autocorrelation and found that forest cover in the surrounding landscape, hunting level, the associated abundance of dispersers, and fruit availability all had significant effects on the percentage of seed dispersal failure. The combination of high fruit availability and reduced abundance of seed dispersers could accelerate seed disperser satiation, causing the seed dispersal system to be saturated. Our study highlights how two major factors associated with anthropogenic activities, forest cover and hunting, affect seed dispersal by animals. These findings could have far‐reaching implications for our understanding of tree‐frugivore interactions and the conservation of tropical communities.  相似文献   

7.
Hunting can change abundances of vertebrate seed predators and seed dispersers, causing species‐specific changes in seed dispersal and seed predation and altering seedling communities. What are the consequences of these changes for the adult plant community in the next generation and beyond? Here, I derive equations showing how reduced seed dispersal reduces plant reproduction by intensifying kin competition, increasing vulnerability to natural enemies, and reducing the proportion of seeds passing through disperser guts. I parameterize these equations with available empirical data to estimate the likely effects on next‐generation abundances. I then consider the indirect effects and longer‐term feedbacks of changed seed or adult abundances on reproductive rates due to density‐dependent interactions with natural enemies and mutualists, as well as niche differentiation with competitors, and discuss their likely qualitative effects. The factors limiting seed disperser and seed predator populations in natural and hunted forests emerge as critical for determining the long‐term effects of hunting on rates of seed dispersal and seed predation. For example, where seed dispersers are held to a constant abundance by hunters, decreases in the availability of their preferred food plants are expected to lead to increased per‐seed dispersal probabilities, potentially to the point of compensating for the initial disperser decline. I close by discussing the likely reversibility of hunting‐induced changes in tropical forests and key questions and directions for future research.  相似文献   

8.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

9.
Moran C  Catterall CP  Green RJ  Olsen MF 《Oecologia》2004,141(4):584-595
Seed dispersal plays a critical role in rainforest regeneration patterns, hence loss of avian seed dispersers in fragmented landscapes may disrupt forest regeneration dynamics. To predict whether or not a plant will be dispersed in fragmented forests, it is necessary to have information about frugivorous bird distribution and dietary composition. However, specific dietary information for frugivorous birds is often limited. In such cases, information on the seed-crushing behaviour, gape width and relative dietary dominance by fruit may be used to describe functional groups of bird species with respect to their potential to disperse similar seeds. We used this information to assess differences in the seed dispersal potential of frugivorous bird assemblages in a fragmented rainforest landscape of southeast Queensland, Australia. The relative abundance of frugivorous birds was surveyed in extensive, remnant and regrowth rainforest sites (16 replicates of each). Large-gaped birds with mixed diets and medium-gaped birds with fruit-dominated diets were usually less abundant in remnants and regrowth than in continuous forest. Small-gaped birds with mixed diets and birds with fruit as a minor dietary component were most abundant in regrowth. We recorded a similar number of seed-crushing birds and large-gaped birds with fruit-dominated diets across site types. Bird species that may have the greatest potential to disperse a large volume and wide variety of plants, including large-seeded plants, tended to be less abundant outside of extensive forests, although one species, the figbird Sphecotheres viridis, was much more abundant in these areas. The results suggest that the dispersal of certain plant taxa would be limited in this fragmented landscape, although the potential for the dispersal of large-seeded plants may remain, despite the loss of several large-gaped disperser species.  相似文献   

10.
Selective pressures on seed size could vary among the different stages of plant life cycles, so no simple relation could explain a priori its evolution. Here, we determined the relationships between seed size and two fitness components—seed dispersal and survival from predation—in a bird-dispersed tree, Crataegus monogyna. We interpret these relationships in relation to the patterns of mass allocation to fruit and seed components. Selection patterns were assessed at two levels (1) selection pressures on the parent tree; comparing seed dispersal efficiency among individual plants and (2) selection pressures at the individual seed level; comparing seed size variation (i) before and after dispersal, and (ii) before and after postdispersal seed predation. Dispersal efficiency (percentage of seed crop dispersed) was positively correlated with fruit mass and fruit width. Differences in crop size did not offset this effect, and larger seeds were overrepresented in the seed rain relative to the seed pool before dispersal. However, the advantage of larger seeds during the dispersal stage was cancelled later by an opposite selection pressure exerted by seed predators. As a result, smaller seeds had a higher probability of surviving postdispersal seed predation, establishing an evolutionary conflict imposed by the need for dispersal and the danger of being predated. Birds and rodents preferentially selected highly profitable fruits and seeds in terms of the relative proportion of their components. Larger fruits had a higher pulp to seed proportion than smaller ones, and all seeds had the same proportion of coat relative to the embryo-plus-endosperm fraction. Hence, although predator pressures were stronger than disperser ones, larger seeds invested proportionally less in structural defense than in dispersal.  相似文献   

11.
We tested for geographic patterns in fruit colour diversity. Fruit colours are thought to promote detection by seed dispersers. Because seed dispersers differ in their spectral sensitivities, we predicted that fruit colour diversity would be higher in regions with higher seed disperser diversity (i.e. the tropics). We collected reflectance data on 232 fruiting plant species and their natural backgrounds in seven localities in Europe, North and South America, and analysed fruit colour diversity according to the visual system of birds—the primary consumer types of these fruits. We found no evidence that fruit colours are either more conspicuous or more diverse in tropical areas characterised by higher seed disperser diversity. Instead, fruit colour diversity was lowest in central Brazil, suggesting that fruit colours may be more diverse in temperate regions. Although we found little evidence for geographic variation in fruit hues, the spectral properties of fruits were positively associated with the spectral properties of backgrounds. This result implies that fruit colours may be influenced by selection on the reflectance properties of leaves, thus constraining the evolution of fruit colour. Overall, the results suggest that fruit colours in the tropics are neither more diverse nor more conspicuous than temperate fruits, and that fruit colours may be influenced by correlated selection on leaf reflectance properties. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Endozoochory is a prominent form of seed dispersal in tropical dry forests. Most extant megafauna that perform such seed dispersal are ungulates, which can also be seed predators. White‐tailed deer (Odocoileus virginianus) is one of the last extant megafauna of Neotropical dry forests, but whether it serves as a legitimate seed disperser is poorly understood. We studied seed dispersal patterns and germination after white‐tailed deer gut passage in a tropical dry forest in southwest Ecuador. Over 23 mo, we recorded ca 2000 seeds of 11 species in 385 fecal samples. Most seeds belonged to four species of Fabaceae: Chloroleucon mangense, Senna mollissima, Piptadenia flava, and Caesalpinia glabrata. Seeds from eight of the 11 species dispersed by white‐tailed deer germinated under controlled conditions. Ingestion did not affect germination of C. mangense and S. mollissima, whereas C. glabrata showed reduced germination. Nevertheless, the removal of fruit pulp resulting from ingestion by white‐tailed deer could have a deinhibition effect on germination due to seed release. Thus, white‐tailed deer play an important role as legitimate seed dispersers of woody species formerly considered autochorous. Our results suggest that more research is needed to fully understand the ecological and evolutionary effects of the remaining extant megafauna on plant regeneration dynamics in the dry Neotropics.  相似文献   

13.
The disappearance of native seed dispersers due to anthropogenic activities is often accompanied by the introduction of alien species, which may to some extent replace the ecological service provided by the extinct ones. Yet, little empirical evidence exists demonstrating the evolutionary consequences of such alien “replacement.” Here, we document the conflicting selection exerted on seed size by two native lizards (Podarcis lilfordi and P. pityusensis) and an alien mammal species (Martes martes), all acting as legitimate seed dispersers of the Mediterranean relict Cneorum tricoccon. While lizards mostly exerted a negative directional selection on seed diameter, especially P. pityusensis, the much larger pine marten exerted positive selection on seed size. Our findings suggest that this among‐disperser variation in the selection regimes, together with the occurrence of spatial variation in the presence of each seed disperser, help to create the geographical variation observed for seed size of C. tricoccon. To our knowledge, this is the first empirical evidence showing opposing selective pressures between native and alien species in the seed dispersal process in an invaded ecosystem.  相似文献   

14.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   

15.
For a plant with bird-dispersed seeds, the effectiveness of seed dispersal can change with fruit availability at scales ranging from individual plants to neighborhoods, and the scale at which frugivory patterns emerge may be specific for frugivorous species differing in their life-history and behavior. The authors explore the influence of multispecies fruit availability at two local spatial scales on fruit consumption of Eugenia uniflora trees for two functional groups of birds. The authors related visitation and fruit removal by fruit gulpers and pulp mashers to crop size and conspecific and heterospecific fruit abundance to assess the potential roles that facilitative or competitive interactions play on seed dispersal. The same fruiting scenario influenced fruit gulpers (legitimate seed dispersers) and pulp mashers (inefficient dispersers) in different ways. Visits and fruit removal by legitimate seed dispersers were positively related to crop size and slightly related to conspecific, but not to heterospecific fruit neighborhoods. Visits and fruit consumption by pulp mashers was not related to crop size and decreased with heterospecific fruit availability in neighborhoods; however, this might not result in competition for dispersers. The weak evidence for facilitative or competitive processes suggest that interaction of E. uniflora with seed dispersers may depend primarily on crop size or other plant’s attributes susceptible to selection. The results give limited support to the hypothesis that spatial patterns of fruit availability influence fruit consumption by birds, and highlight the importance of considering separately legitimate and inefficient dispersers to explain the mechanisms that lie behind spatial patterns of seed dispersal.  相似文献   

16.
Several plant characteristics, such as fruit production, nutrient reward, secondary compounds, and fruit color display, affect fruit choice by birds. On the other hand, several bird attributes affect their efficiency as dispersers. Here we investigate the ornithochoric seed dispersal of Pera glabrata Schott (Euphorbiaceae) in a cerrado fragment in southeastern Brazil. A set of bird attributes, such as frequency of visits, number of diaspores eaten, time spent foraging, methods of taking and handling the diaspores and agonistic interactions were analyzed in order to infer about the potential of each species to act as a seed disperser. Birds were the unique seed dispersers of these oil-rich diaspores. We observed 414 bird visits during 60 hours of focal observations in five trees from December 1999 to January 2000. Twenty bird species from seven families ate the diaspores of P. glabrata, but only 14 species were considered potential seed dispersers because they swallowed the diaspores, increasing the probabilities for the seeds to be defecated and/or regurgitated away from the parent trees. The main potential seed dispersers were: Turdus leucomelas (Muscicapidae), Dacnis cayana (Emberizidae), Colaptes melanochloros (Picidae) and Elaenia spp. (Tyrannidae). We did not find any significant seasonal change in the number of visits on the fruiting trees throughout the day. We also did not find any relation between the number of visits per tree and fruit production. The most effective seed dispersers of P. glabrata were generalist birds, which have a high visiting rate, high fruit consumption rate, and spend short periods on the plants. The large number of species recorded as potential seed dispersers of P. glabrata, being most of them very abundant even in Brazilian disturbed areas, may guarantee seed dispersal of this plant in small fragments and regenerating areas.  相似文献   

17.
We evaluated the role of wild large mammals as dispersers of fleshy-fruited woody plants in woodland pastures of the Cantabrian range (N Spain). By searching for seeds in mammal scats across four localities, we addressed how extensive seed dispersal was in relation to the fleshy-fruited plant community, and applied a network approach to identify the relative role of mammal species in the seed dispersal process. We also tested the response of mammalian dispersers to forest availability at increasing spatial scales. Five carnivores and three ungulates dispersed seeds of eight fleshy-fruited trees and shrubs. Mammalian seed dispersal did not mirror community-wide fruit availability, as abundant fruiting trees were scarce whereas thorny shrubs were over-represented among dispersed species. The dispersal network was dominated by bramble (Rubus ulmifolius/fruticosus), the remaining plants being rarer and showing more restricted disperser coteries. Fox (Vulpes vulpes), badger (Meles meles), and wild boar (Sus scrofa) dispersed mostly bramble, whereas martens (Martes sp.) dispersed mostly wild rose (Rosa sp.). Ungulates occasionally dispersed holly (Ilex aquifolium) and hawthorn (Crataegus monogyna). The empirical network reflected a skewed distribution of interactions and some functional complementarity (as judged from the low levels of connectance and nestedness), but also some degree of specialization. Mammals overused uncovered microsites for seed deposition, and increased their disperser activity in those landscape sectors devoid of forest. Combined with previous findings on avian seed dispersal, this study suggest a strong functional complementarity coming from the low overlap in the main plant types that mammals and birds disperse – thorny shrubs and trees, respectively – and the differential patterns of seed deposition, with mammals mostly dispersing into deforested areas, and birds into forest-rich landscapes.  相似文献   

18.
Capuchin monkeys (Cebus spp. and Sapajus spp.) and coatis (Nasua spp.) coexist in most neotropical forests, including small forest remnants. Both capuchins and coatis eat fruit and disperse seeds, but little is known about whether their roles in seed dispersal are redundant or complementary. We compiled 49 studies from the literature on feeding by capuchins and/or coatis, of which 19 were comprehensive enough for our analyses. We determined the relative importance of fruit eating to each species and compared their diets. Additionally, we analysed the structure of three fruit–frugivore networks built with both animal groups and the fruits they eat and evaluated whether fruit traits influenced the network topology. Fruits represented the largest part of capuchin and coati diets, even though coatis have been known for their opportunistic and generalist diets. Capuchins and coatis also exhibited similar general diet parameters (niche breadth and trophic diversity). The three networks exhibited high connectance values and variable niche overlap. A Multiple Correspondence Analysis, failed to detect any trait or trait combination related to food use. In conclusion, capuchins and coatis both have generalist diets; they feed on many different species of fruits and exhibit important complementarity as seed dispersers. Both are likely to be particularly important seed dispersers in disturbed and fragmented forests.  相似文献   

19.
Success of flowering plants is greatly dependent on effective seed dispersal. Specific fruit types aid different mechanisms of seed dispersal. However, little is known about what evolutionary forces have driven the diversification of fruit types and whether there were phylogenetic constraints on fruit evolution among angio-sperm lineages. To address these questions, we first surveyed the orders and families of angiosperms for fruit types and found no clear association between fruit types and major angiosperm lineages, suggesting there was little phylogenetic constraint on fruit evolution at this level. We then surveyed fruit types found in two contrasting habitats: an open habitat including the Indian desert and North American plains and prairies, and a closed forest habitat of Australian tropical forest. The majority of genera in the survey of tropical forests in Australia were fleshy fruit trees, whereas the majority of genera in the survey of prairies and plains in central North America were herbs with capsules and achenes. Both capsules and achenes are frequently dispersed by wind in the open, arid habitat, whereas fleshy fruits are generally dispersed by animals. Since desert and plains tend to provide continuous wind to aid dispersal and there are more abundant mammal and bird dispersers in the closed forest, this survey suggests that fruit evolution was driven at least in part by dispersal agents abundant in particular habitats.  相似文献   

20.
果实类型和种子传播的进化:系统发育和生态学简论   总被引:1,自引:0,他引:1  
Success of flowering plants is greatly dependent on effective seed dispersal. Specific fruit types aid different mechanisms of seed dispersal. However, little is known about what evolutionary forces have driven the diversification of fruit types and whether there were phylogenetic constraints on fruit evolution among angiosperm lineages. To address these questions, we first surveyed the orders and families of angiosperms for fruit types and found no clear association between fruit types and major angiosperm lineages, suggesting there was little phylogenetic constraint on fruit evolution at this level. We then surveyed fruit types found in two contrasting habitats an open habitat including the Indian desert and North American plains and prairies, and a closed forest habitat of Australian tropical forest. The majority of genera in the survey of tropical forests in Australia were fleshy fruit trees, whereas the majority of genera in the survey of prairies and plains in central North America were herbs with capsules and achenes. Both capsules and achenes are frequently dispersed by wind in the open, arid habitat, whereas fleshy fruits are generally dispersed by animals. Since desert and plains tend to provide continuous wind to aid dispersal and there are more abundant mammal and bird dispersers in the closed forest, this survey suggests that fruit evolution was driven at least in part by dispersal agents abundant in particular habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号