首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated Golgi apparatus membranes from the germinal elements (spermatocytes and early spermatids) of rat testis were examined for their ability to incorporate [14C]mannose and [14C]galactose into glycolipid and glycoprotein fractions. Transfer of mannose from GDP-[14C]mannose into a Lipid I fractions (GPD:MPP mannosyl transferase activity), identified as mannosyl phosphoryl dolichol, showed optimal activity at 1.5 mM manganese and at pH 7.5. Low concentrations of Triton X-100 (0.1%) stimulated transferase activity in the presence of exogenous dolichol phosphate (Dol-P); however, inhibition occurred at Triton X-100 concentrations greater than 0.1%. Maximal activity of this GDP:MPP mannosyl transferase occurred at 25 microM Dol-P. Activity using endogenous acceptor was 2.34 pmole/min/mg, whereas in the presence of 25 microM Dol-P the specific activity was 284 pmole/min/mg, a stimulation of 125-fold. Incorporation of mannose into a Lipid II (oligosaccharide pyrophosphoryl dolichol) and a glycoprotein fraction was also examined. In the absence of exogenous Dol-P, rapid incorporation into Lipid I occurred with a subsequent rise in Lipid II and glycoprotein fractions suggesting precursor-product relationships. Addition of exogenous Dol-P to galactosyl transferase assays showed only a minor stimulation, less than twofold, in all fractions. Over the concentration range of 9.4 to 62.5 micrograms/ml Dol-P, only 1% of radioactive product accumulated in the combined lipid fractions. These observations suggest that the mannose transfer involves Dol-P intermediates and also that spermatocyte Golgi membranes may be involved in formation of the oligosaccharide core as well as in terminal glycosylations.  相似文献   

2.
A procedure for the quantitative extraction of both dolichol and dolichyl phosphate (Dol-P) in plant tissue (soybean embryos) into diethyl ether from an alkaline saponification mixture is described. A complete and quantitative separation of total dolichol and total Dol-P is then obtained based on their respective solubilities in diethyl ether and water. After separation dolichol and Dol-P can both be analyzed and quantitated directly by reverse-phase HPLC on C18 columns without additional purification. The two major homologs of dolichol and Dol-P are those with 17 and 18 isoprene units. The total dolichol and total Dol-P contents of dry embryos were 96.3 +/- 0.8 and 5.3 +/- 0.1 micrograms/g, respectively. The post-HPLC recoveries for dolichol and Dol-P were 101 +/- 2 and 84 +/- 3% respectively, using [1-14C]dolichol and Dol-P containing 20 isoprene units as recovery standards. Dol-P estimations could be carried out on material equivalent to as little as 65 mg embryo tissue.  相似文献   

3.
A long-chain cis-isoprenyltransferase (cis-IPTase) located in the endoplasmic reticulum (ER) catalyzes the chain elongation stage in the pathway for the de novo biosynthesis of dolichyl monophosphate (Dol-P) in eukaryotic cells. In Saccharomyces cerevisiae, the ER-associated cis-IPTase is encoded by the RER2 gene. Mutations in the RER2 gene result in defects in growth and protein N-glycosylation. In this study a cDNA isolated from human brain (Accession No. AK023164.1), which has substantial homology to cis-IPTases from bacteria, Arabidopsis, and S. cerevisiae, has been shown to: (1) complement the growth defect; (2) restore cis-IPTase activity; dolichol and Dol-P synthesis; and (3) restore normal N-glycosylation of carboxypeptidase Y (CPY) in the yeast rer2Delta mutant. Consistent with a role in Dol-P biosynthesis, overexpression of the human cis-isoprenyltransferase (hCIT) cDNA also suppresses the temperature-sensitive growth and CPY hypoglycosylation phenotypes in sec59-1 cells which are defective in Dol-P biosynthesis due to a temperature-sensitive mutation in dolichol kinase. Overexpression of hCIT in Chinese hamster ovary (CHO) cells results in a modest increase in cis-IPTase activity associated with microsomal fractions and the appearance of a new 38kDa polypeptide that co-localizes with calnexin in the ER, the site of Dol-P biosynthesis, even though no transmembrane domains are predicted by a hydropathy plot.  相似文献   

4.
We have previously shown that of several methods examined, the maximum yield of dolichyl phosphate (Dol-P) from rat liver was achieved by saponification of the tissue and subsequent extraction with diethyl ether (R.K. Keller et al. (1985) Anal. Biochem. 147, 166-173). In the present report, we have developed a rapid procedure using non-toxic solvents which resolves the ether extract on a C18 cartridge column into four major fractions: (1) fatty acids; (2) squalene and sterols; (3) dolichol; (4) Dol-P. The utility of the new procedure was demonstrated by preparing the four fractions from liver slices which had been incubated with [3H]acetate. HPLC analysis of the sterol, dolichol and Dol-P fractions yielded well resolved elution profiles, thereby allowing determination of radioactivity incorporated into the major isoprenoids and their metabolites.  相似文献   

5.
Dolichols (Dol) are polyprenol lipids that are essential structural components of eukaryotic membranes. In addition, the phosphorylated derivatives of Dol function as lipid anchors of mono- and oligosaccharide precursors involved in protein glycosylation. The biological importance of Dol phosphates (Dol-P) is illustrated by the severe outcome of human disorders linked to Dol biosynthetic defects, such as Dol-kinase deficiency. For characterization of inherited human diseases and evaluation of therapeutic trials, cultured cells often serve as a sole possible source for experimentation. Limited amounts of cell culture material render the quantitative analysis of Dol a challenging task. Here, we present HPLC- and mass spectrometry-based approaches to analyze and quantitate Dol-P from cultured human cells. The composition of naturally occurring Dol-P and the saturation state of the α-isoprene units was identified by negative-ion electrospray ionization mass spectrometry. Furthermore, fluorescently labeled Dol-P were separated by HPLC and quantified by comparison to known amounts of the internal standard polyprenol-P. The effect of pravastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitor, on the formation of Dol-P in HeLa cells was investigated. As expected, this treatment led to a decrease of Dol-P down to 35% of normal levels.  相似文献   

6.
During protein N-glycosylation, dolichyl pyrophosphate (Dol-P-P) is discharged in the lumenal monolayer of the endoplasmic reticulum (ER). Dol-P-P is then cleaved to Dol-P by Dol-P-P phosphatase (DPPase). Studies with the yeast mutant cwh8Delta, lacking DPPase activity, indicate that recycling of Dol-P produced by DPPase contributes significantly to the pool of Dol-P utilized for lipid intermediate biosynthesis on the cytoplasmic leaflet. Whether Dol-P formed in the lumen diffuses directly back to the cytoplasmic leaflet or is first dephosphorylated to dolichol has not been determined. Incubation of sealed ER vesicles from calf brain with acetyl-Asn-Tyr-Thr-NH(2), an N-glycosylatable peptide, to generate Dol-P-P in the lumenal monolayer produced corresponding increases in the rates of Man-P-Dol, Glc-P-Dol, and GlcNAc-P-P-Dol synthesis in the absence of CTP. No changes in dolichol kinase activity were observed. When streptolysin-O permeabilized CHO cells were incubated with an acceptor peptide, N-glycopeptide synthesis, requiring multiple cycles of the dolichol pathway, occurred in the absence of CTP. The results obtained with sealed microsomes and CHO cells indicate that Dol-P, formed from Dol-P-P, returns to the cytoplasmic leaflet where it can be reutilized for lipid intermediate biosynthesis, and dolichol kinase is not required for recycling. It is possible that the flip-flopping of the carrier lipid is mediated by a flippase, which would provide a mechanism for the recycling of Dol-P derived from Man-P-Dol-mediated reactions in N-, O-, and C-mannosylation of proteins, GPI anchor assembly, and the three Glc-P-Dol-mediated reactions in Glc(3)Man(9)GlcNAc(2)-P-P-Dol (DLO) biosynthesis.  相似文献   

7.
A comparison has been made of the enzymes catalyzing the transfer of mannose, glucose and N-acetylglucosamine from, respectively, GDPmannose, UDP-glucose and UDP-N-acetylglucosamine to endogenous dolichol phosphate (Dol-P) in liver Golgi membranes. Evidence is presented with suggests that all three reactions utilize the same pool of Dol-P. The transfer of mannose from GDP-Man to Dol-P is not inhibited by 0.1 mM UDP or UMP; 0.1 mM GDP did block the accumulation of mannose in Dol-P-Man. The net transfer of glucose and N-acetylglucosamine to Dol-P is prevented by 0.1 mM UDP but not 0.1 mM GDP. UDPglucose inhibits the reverse of the glucose transfer reaction but not the reverse of the N-acetylglucosamine or mannose trasfer reaction. On the basis of this, and other data, it is concluded that the three sugar transfer reactions utilize separate enzymes.  相似文献   

8.
Bilayer membrane destabilization induced by dolichylphosphate   总被引:1,自引:0,他引:1  
Small vesicles containing the fluorescent probe calcein were used to investigate the effect of dolichyl phosphate (Dol-P) on phospholipid bilayer stability. In the absence of Dol-P, phospholipid vesicles retained the fluorescent probe upon the addition of divalent cations. Small vesicles containing Dol-P, however, exhibited calcein leakage when incubated in the presence of divalent cations. This effect was observed in liposomes composed of a mixture of phosphatidylethanolamine (PE), phosphatidylcholine (PC) and Dol-P, but not in PC/Dol-P liposomes. The rate of calcein leakage was proportional to divalent cation concentration and to temperature, but was independent of vesicle concentration. These results demonstrate that Dol-P has significant effects on the stability of PE containing phospholipid bilayers. Vesicle leakage was also promoted by the addition of rat liver Dol-P-mannose synthase (EC 2.4.1.83) to intact PE/PC/Dol-P vesicles. Enzyme induced leakage from phospholipid vesicles required the presence of both unsaturated PE and Dol-P. The phospholipid composition of leaky vesicles could be correlated with the lipid matrix required for maximal transferase activity of the rat liver synthase. The destabilizing effects of Dol-P on phospholipid bilayers may therefore be involved in the translocation of activated sugars across biological membranes.  相似文献   

9.
Estrogen-induced chick oviduct differentiation is accompanied by an increased capacity for protein glycosylation. A portion of this increase has been attributed to increased levels of dolichyl phosphate (Dol-P). Hormone withdrawal leads to an apparent decrease in Dol-P. Dol-P metabolism in the oviduct has been studied, and one of the enzymes having a direct effect on Dol-P, Dol-P phosphatase is herein described. Dol-P phosphatase has a pH optimum of 6.0, does not require a metal ion, and is inhibited by Mn2+ at concentrations greater than 5 mM. Inhibitor studies indicate that Dol-P hydrolysis is inhibited by polyprenyl phosphates having both saturated and unsaturated alpha-isoprene residues, but not by the corresponding alcohols. The enzyme is also inhibited by phosphatidic acid unless 2 mM Mn2+ is included in the incubations. Under these conditions Dol-P hydrolysis is only slightly inhibited (less than 10%), but phosphatidate inhibition is totally eliminated. Oviduct membranes also possess phosphatidate phosphatase, but this enzyme is distinct from Dol-P phosphatase based on thermolability, metal ion sensitivity, and sulfhydryl reagent sensitivity. Studies of enzyme activity in response to estrogen treatment reveal that both Dol-P phosphatase and phosphatidate phosphatase have maximal specific activity early in the differentiation process (peaking after 3 days of treatment), and low specific activity in fully differentiated oviducts, including laying hen oviduct. Hormone withdrawal elicits a small increase in specific activity of both phosphatases. The hormone effects suggest that Dol-P phosphatase may be a biosynthetic enzyme.  相似文献   

10.
A series of polyprenols, ranging in length from 15 to 22 isoprene units, has been isolated from soya beans (Glycine max) and purified by high-pressure liquid chromatography. N.m.r., i.r. and mass spectra of the compounds indicated that they are alpha-saturated polyprenols of the dolichol type. The amount present in dry seeds was about 9 mg/100 g, whereas dolichyl phosphate (Dol-P) was present only in trace amounts. Dol-P phosphatase activity was detected in the microsomal fraction of 5-day-old germinating soya-bean cotyledons. The Dol-P phosphatase activity was linear with respect to time and protein concentration and exhibited a broad pH optimum (pH 7-9). Triton X-100 was necessary for significant enzyme activity. Enzyme activity was slightly enhanced by EDTA, whereas dithiothreitol was without effect. An apparent Km of 5 microM was determined for Dol-P. Bivalent metal ions were not required for enzyme activity. A number of phosphorylated compounds tested as enzyme substrates (including a number of nucleoside phosphates, glucose 6-phosphate, sodium beta-glycerophosphate and Na4P2O7) did not compete with [1-3H]Dol-P as substrate. A number of phospholipids were also tested for their ability to act as Dol-P phosphatase substrates. At 1 mM concentration, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and lysophosphatidic acid each inhibited enzymic activity. However, at 0.1 mM concentration, phosphatidylcholine and phosphatidylethanolamine were slightly stimulatory, whereas phosphatidic acid and lysophosphatidic acid were still inhibitory. Phosphatidic acid showed competitive inhibition.  相似文献   

11.
J A Alhadeff  P Watkins 《Enzyme》1984,31(2):90-103
The enzymatic transfer of GlcNAc from UDP-GlcNAc and Man from GDP-Man to Dol-P has been characterized in human liver preparations. The presence of low concentrations of detergent, divalent cation and exogenous Dol-P are required for both enzymatic activities. The pH optimum of both reactions is broad with maximal activity near pH 7.8. The majority of N-acetylglucosaminyltransferase (90%) and mannosyltransferase (85%) activities is particulate but approximately 90% of both activities can be released into supernatant fluids by using Triton X-100 in the homogenizing buffer. The supernatant fluid enzymes have properties similar to those of the particulate enzymes although their activities are considerably less stable. Preliminary characterization of the enzymatic reaction products gave the following evidence for formation of GlcNAc and Man derivatives of Dol-P: (1) radiolabelled products are soluble in organic solvents; (2) for each reaction no detectable product is found without addition of exogenous Dol-P and increasing amounts of product are found with increasing amounts of this lipid; (3) acid and base hydrolysis of the glycolipid product (from the N-acetylglucosaminyltransferase reaction) result in radioactive, water-soluble compounds which comigrate with authentic GlcNAc and GlcNAc-1-P, respectively; (4) acid and base hydrolysis of the glycolipid product (from the mannosyltransferase reaction) result in radioactive, water-soluble compounds which comigrate with authentic Man and Man-1-P, respectively.  相似文献   

12.
Rat liver microsomes were isolated and fractionated into Golgi, smooth endoplasmic reticulum (SER), and rough endoplasmic reticulum (RER), and the purity of these preparations was determined. The dolichyl phosphate (Dol-P) content of whole microsomes and of each of the submicrosomal fractions was estimated using high pressure liquid chromatography. Dol-P accounts for 4 and 40% of the sum of the alcohol, the fatty acyl esters of dolichol, and monophosphate forms present in whole liver and in purified microsomes, respectively. Concentrations equal to 58, 77, and 108 ng of Dol-P/mg of protein were found in Golgi, SER, and RER, respectively. These values represent 3, 36, and 54% of the sum of the alcohol, the fatty acyl esters of dolichol, and monophosphate forms present in each of these same fractions, respectively. Increases in the Dol-P content of rat liver were observed as early as 12 h after turpentine-induced inflammation and increased 2-fold over 36 h. In this system, Dol-P accounts for no more than 50% of the sum of all phosphorylated and pyrophosphorylated dolichol intermediates present. The specific activity for dolichyl phosphate phosphatase was highest by more than a factor of 2 in Golgi membrane. Specific activities obtained for SER and RER were 42 and 11% of those present in Golgi. The major requirement for Dol-P is thought to be for the saccharide and oligosaccharide transferase reactions which are presumed to take place in RER. The discovery of significant quantities of Dol-P in Golgi and SER is consistent with a possible role of Dol-P in the transport of sugars required for glycoprotein synthesis and processing from a cytosolic to luminal orientation.  相似文献   

13.
Mutations in the CWH8 gene, which encodes an ER transmembrane protein with a phosphate binding pocket in Saccharomyces cerevisiae, result in a deficiency in dolichyl pyrophosphate (Dol-P-P)-linked oligosaccharide intermediate synthesis and protein N-glycosylation (van Berkel, M. A., Rieger, M., te Heesen, S., Ram, A. F., van den Ende, H., Aebi, M., and Klis, F. M. (1999) Glycobiology 9, 243-253). Genetic, enzymological, and topological approaches were taken to investigate the potential role of Cwh8p in Dol-P-P/Dol-P metabolism. Overexpression of Cwh8p in the yeast double mutant strain, lacking LPP1/DPP1, resulted in an impressive increase in Dol-P-P phosphatase activity, a relatively small increase in Dol-P phosphatase activity, but no change in phosphatidate (PA) phosphatase activity in microsomal fractions. The Dol-P-P phosphatase encoded by CWH8 is optimally active in the presence of 0.5% octyl glucoside and relatively unstable in Triton X-100, distinguishing this activity from the lipid phosphatases encoded by LPP1 and DPP1. Stoichiometric amounts of P(i) and Dol-P are formed during the enzymatic reaction indicating that Cwh8p cleaves the anhydride linkage in Dol-P-P. Membrane fractions from Sf-9 cells expressing Cwh8p contained a 30-fold higher level of Dol-P-P phosphatase activity, a slight increase in Dol-P phosphatase activity, but no increase in PA phosphatase relative to controls. This is the first report of a lipid phosphatase that hydrolyzes Dol-P-P/Dol-P but not PA. In accord with this enzymatic function, Dol-P-P accumulated in cells lacking the Dol-P-P phosphatase. Topological studies using different approaches indicate that Cwh8p is a transmembrane protein with a luminally oriented active site. The specificity, subcellular location, and topological orientation of this novel enzyme are consistent with a role in the re-utilization of the glycosyl carrier lipid for additional rounds of lipid intermediate biosynthesis after its release during protein N-glycosylation reactions.  相似文献   

14.
The subcellular locations of several enzymes involved in dolichyl monophosphate (Dol-P) metabolism in brain have been investigated. Dolichol kinase is highly enriched in a heavy microsomal fraction from calf brain, while 71% of the Dol-P phosphatase activity was recovered with the light microsomes. Lower amounts of the phosphatase activity were also found in the heavy microsomal, mitochondrial-lysosomal, and synaptic plasma membrane fractions. Since the light microsomal fraction also contained substantial acetylcholinesterase activity, an axon plasma membrane marker, an axolemma-enriched fraction, was prepared from rat brain by a second procedure. A comparison with microsomal and mitochondrial-lysosomal fractions revealed that the axolemma-enriched fraction contained the highest specific activity of Dol-P phosphatase, indicating that the enzyme was present in the axon plasma membrane. The tunicamycin-sensitive UDP-N-acetylglucosamine:Dol-P N- acetylglucosaminylphosphotransferase , glucosyl- phosphoryldolichol (Glc-P-Dol) synthase, Glc-P-Dol:oligosaccharide glucosyltransferase, and the oligosaccharyltransferase were all found predominantly in the heavy microsomes. These results indicate that the enzymes responsible for the initiation and termination of biosynthesis, as well as the transfer of dolichol-linked oligosaccharides, reside in the rough endoplasmic reticulum (ER) of central nervous tissue. Evidence that at least some Dol-P molecules formed by dolichol kinase are accessible to multiple glycosyltransferases in the rough ER of brain is also presented.  相似文献   

15.
The mechanism of induction of apoptosis by dolichyl phosphate (Dol-P) was investigated in U937 cells. Studies using isolated mitochondria revealed that the respiratory complex II activity was almost completely inhibited by 20 microg/ml of Dol-P but not by the same concentration of dolichol. Activities of complex I and III were also inhibited by Dol-P, but nearly 50% of activity still remained at 20 microg/ml. Dol-P induced release of cytochrome-c from the isolated mitochondria. Fluorometric microtiter plate assay revealed that generation of reactive oxygen species (ROS) increased in a time-dependent manner. Flow cytometric analysis also indicated that Dol-P caused loss of mitochondrial membrane potential (Deltapsi(m)) and increased ROS generation. The addition of the antioxidant pyrrolidine dithiocarbamate (PDTC) significantly inhibited Dol-P-induced ROS generation and activation of caspase-3. A specific inhibitor of respiratory complex II, thenoyltrifluoroacetone (TTFA), increased ROS generation, potentially mimicking the consequence of inhibition of electron flow at complex II by Dol-P in U937 cells. Electron microscopy revealed that mitochondria became swollen and spherical in shape by the treatment with Dol-P. Neither the tyrosine kinase inhibitor k252a nor mitogen activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitors PD98059 and U0126 inhibited the Dol-P-induced apoptosis. Together, these results suggest that the direct disruption of mitochondrial respiratory complexes and the consequent ROS generation play a critical role in the initiation of Dol-P-induced apoptosis.  相似文献   

16.
A large developmental increase in Glc3Man9- GlcNAc2-P-P-dolichol (Oligo-P-P-Dol) synthesis and protein W-glycosylation in primary cultures of embryonic rat brain cells has been reported previously. In vitro enzyme studies and metabolic labeling experiments now show that there is a coordinate induction of long-chain c/s-iso- prenyltransferase (IPTase) activity, an activity required for the chain-elongation stage of dolichyl monophosphate (Dol-P) biosynthesis de novo, and Oligo-P-P-Dol biosynthesis in embryonic rat brain. Different developmental patterns were observed for IPTase and |8-hydroxy-/3-methyl- glutaryl-CoA (HMG-CoA) reductase activity as well as Dol- P and cholesterol biosynthesis, indicating that these pathways are regulated independently in rat brain. Three separate experimental approaches provide evidence that the amount of Dol-P available in the rough endoplasmic reticulum (RER) is a rate-limiting factor in the expression of the lipid intermediate pathway. First, metabolic labeling experiments show that the biosynthesis of Dol-P is induced at the same time or just prior to the induction of Oligo-P-P-Dol biosynthesis. Second, the time of induction and rate of Oligo-P-P-Dol synthesis are accelerated when Dol-P is supplemented in the culture medium. Third, in vitro assays of mannosylphosphoryldolichol synthase and A/-acetylglucosaminylpyrophosphoryldolichol synthase indicate that there are only minor increases in the levels of these enzymes during development, but the amount of endogenous Dol-P in the RER that is accessible to the glycosyltransferases increases when IPTase activity is induced. In summary, the current studies with embryonic rat brain cells document the coordinate induction of IPTase activity and Oligo-P-P-Dol synthesis, support the hypothesis that the availability of Dol-P in the RER is one rate-limiting factor in Oligo-P-P-Dol synthesis, and strongly suggest that increases in IPTase activity and the rate of de novo Dol-P biosynthesis enhance the capacity of embryonic rat brain cells for lipid intermediate synthesis early in the developmental program for N-linked glycoprotein biosynthesis.  相似文献   

17.
Rat liver microsomal fraction synthesized Ret-P-Man (retinyl phosphate mannose) and Dol-P-Man (dolichyl phosphate mannose) from endogenous Ret-P (retinyl phosphate) and Dol-P (dolichyl phosphate). Ret-P-Man synthesis displayed an absolute requirement for a bivalent cation, and also Dol-P-Man synthesis was stimulated by bivalent metal ions. Mn2+ and Co2+ were the most active, with maximum synthesis of Ret-P-Man occurring at 5-10 mM: Mg2+ was also active, but at higher concentrations. At 5mM-Mn2+ the amount of endogenous Ret-P mannosylated in incubation mixtures containing 5 microM-GDP-mannose in 15 min at 37 degrees C was approx. 3 pmol/mg of protein. In the same assays about 7-10 pmol of endogenous Dol-P was mannosylated. Bivalentcation requirement for Ret-P-Man synthesis from exogenous Ret-P showed maximum synthesis at 2.5 mM-Mn2+ or -Co2+. In addition to Ret-P-Man and Dol-P-Man, a mannolipid co-chromatographing with undecaprenyl phosphate mannose was detected. Triton X-100 (0.5%) abolished Ret-P-Man synthesis from endogenous Ret-P and caused a 99% inhibition of Ret-P-Man synthesis from exogenous Ret-P. The presence of detergent (0.5%) also inhibited Dol-P-Man synthesis from endogenous Dol-P and altered the requirement for Mn2+. Microsomal fraction from Syrian golden hamsters was also active in Ret-P-Man and Dol-P-Man synthesis from endogenous Ret-P and Dol-P. At 5 mM-Mn2+ about 2.5 pmol of endogenous Ret-P and 3.7 pmol of endogenous Dol-P were mannosylated from GDP-mannose per mg of protein in 15 min at 37 degrees C. On the other hand, microsomal fraction from vitamin A-deficient hamsters contained 1.2 pmol of Ret-P and 14.1 pmol of Dol-P available for mannosylation. Since GDP-mannose: Ret-P and GDP-mannose: Dol-P mannosyltransferase activities were not affected, depletion of vitamin A must affect Ret-P and Dol-P pools in opposite ways.  相似文献   

18.
Dolichyl monophosphate (Dol-P) has been found to induce apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5–20 min), caspase-3-like protease activation (2–4 h), chromatin condensation and DNA ladder formation (3–4 h) were observed successively. Here, we report that reduction in mitochondrial transmembrane potential and translocation of apoptosis-inducing factor (AIF) are early events (1–3 h) in the apoptotic process induced by Dol-P in U937 cells. The AIF was concentrated around nuclei and partly translocated to the nuclei, which was confirmed by immunocytochemistry using specific anti-AIF antibody. Both caspase-8 and caspase-3 inhibitors blocked only DNA fragmentation but not mitochondrial processes, AIF migration and chromatin condensation. These results indicate that mitochondrial changes are an early step in the apoptosis induced by Dol-P and AIF is one of the important factors which induce chromatin condensation in nuclei.  相似文献   

19.
Dolichol monophosphate (Dol-P) functions as an obligate glycosyl carrier lipid in protein glycosylation reactions. Dol-P is synthesized by the successive condensation of isopentenyl diphosphate (IPP), with farnesyl diphosphate catalysed by a cis-isoprenyltransferase (cis-IPTase) activity. Despite the recognition of cis-IPTase activity 40 years ago and the molecular cloning of the human cDNA encoding the mammalian enzyme, the molecular machinery responsible for regulating this activity remains incompletely understood. Here, we identify Nogo-B receptor (NgBR) as an essential component of the Dol-P biosynthetic machinery. Loss of NgBR results in a robust deficit in cis-IPTase activity and Dol-P production, leading to diminished levels of dolichol-linked oligosaccharides and a broad reduction in protein N-glycosylation. NgBR interacts with the previously identified cis-IPTase hCIT, enhances hCIT protein stability, and promotes Dol-P production. Identification of NgBR as a component of the cis-IPTase machinery yields insights into the regulation of dolichol biosynthesis.  相似文献   

20.
beta-Adrenoreceptor stimulation of rat parotid acinar cells increases the activity of several microsomal membrane associated, dolichylmonophosphate (Dol-P) linked glycosyltransferases. The activities of Man-P-Dol synthase and Glc-P-Dol synthase are increased by approximately 50%, and the activity of N-acetylglucosaminyl 1-phosphate transferase plus N-acetylglucosaminyl transferase increased by approximately 60%, after agonist treatment. Increases in enzyme activity are (i) independent of endogenous Dol-P levels and (ii) observed under conditions in which the specific activities of donor sugar nucleotides are kept constant. Activation of these enzymes is specific since comparable levels of NADPH-cytochrome c reductase are found in control and agonist-treated membranes. The data thus provide the initial demonstration of neurotransmitter modulation of enzymes in the dolichol-linked pathway of protein N-glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号