首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aminooxyacetic acid (AOA), an inhibitor of ACC biosynthesis, applied together with methyl jasmonate (JA-Me) to mature green and light-green tomatoes cv. Venture greatly inhibited ethylene production stimulated by JA-Me, when analyzed in ripe and overripe stages. AOA applied alone did not affect ethylene production in the same conditions of treatment and analysis. It is suggested that after JA-Me treatment of tomatoes the turnover rate of ACC is higher (JA-Me stimulates EFE activity) in comparison to control tissues, and, consequently, AOA inhibited ethylene production stimulated by methyl jasmonate.  相似文献   

3.
Climacteric rise, ethylene production, peroxidase activity and its isozyme and their interrelationships during the ripening of tomato fruits have been studied. It was found' that there was parallelism between ethylene production and climacteric rise. The climacteric rise of tomato fruits was hastened by ethylene applied at the mature green stage. The ethylene production was inhibited by low oxygen and high carbon dioxide partial pressure. The peroxidase activity in the tomato fruits appeared to be different at three stages, higher in the half red fruits and lower in both green mature and fully red fruits. This activity was increased by ethylene and decreased by lower partial pres- sure of oxygen. The peroxidase isozymes sppeared also different at different stages of ripening. There were 4 bands in young fruits, 3 in green mature fruits, 5 in half red fruits and 3 in fully red fruits. After the application of ethylene to the tomato fruits, there appear one new band of peroxidase isozyme.  相似文献   

4.
Methyl jasmonate (JA-Me) inhibited the germination of cocklebur (Xanthium pennsylvanicum Wallr.) seeds. The inhibition of the germination of cocklebur seeds treated with JA-Me at concentrations less than 300 μm was nullified by ethylene applied exogenously, although the inhibitory effect of 1,000 μm JA-Me was not recovered completely even by high concentrations of ethylene (10,000 μL/liter). JA-Me inhibited ethylene production before seed germination. The level of 1-aminocyclopropane-1-carboxylic acid (ACC) in the cotyledonary tissues treated with JA-Me decreased but not the level of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC). JA-Me inhibited the conversion of ACC to ethylene in the tissues. These results suggested that JA-Me inhibits ethylene production by prevention of ACC oxidation in addition to ACC synthesis. We believe that the inhibition of ethylene production by JA-Me results in the retardation of the germination of cocklebur seeds. Received June 4, 1997; accepted October 23, 1997  相似文献   

5.
Strawberry ( Fragaria ananassa Duch.) fruit exhibit limited capacity for continued development following harvest. This problem can be circumvented by maintaining harvested strawberry fruit in solutions containing sucrose and a bactericide. In this study, we investigated the respiratory and ethylene production kinetics and ethylene responsiveness in strawberry fruit harvested immature and ripened in vitro in the presence of propylene. The effects of 1-amino-cyclopropane-1-carboxylic acid (ACC) and silver thiosulfate (STS) alone and in combination were also examined. Respiration and ethylene patterns of fruit harvested green and developed in vitro declined with maturation and ripening, as did those of field-grown fruit harvested at different stages of ripeness. Exposure of detached green strawberry fruit to 5000 μl litre-1 propylene failed to stimulate respiration or ethylene production, but advanced pigmentation changes and fresh-weight gain significantly. Excised fruit provided with 1 mol-3 ACC exhibited increased ethylene production, enhanced fresh-weight gain, and accelerated anthocyanin accumulation, but showed no change in respiration. The developmental response of harvested strawberry fruit to propylene or ACC was dependent on fruit maturity at harvest, with white fruit exhibiting greater insensitivity compared with green fruit. Silver thiosulfate (0.5 mol-3) applied alone or in combination with ACC failed to delay ripening in excised strawberry fruit. These experiments demonstrate that ripening in detached strawberry fruit can be modified by ethylene only in green fruit that are provided with a carbohydrate source. Ethylene, when applied exogenously as ACC or propylene to green fruit, can slightly increase fruit growth and the rate of colour development.  相似文献   

6.
Diazocyclopentadiene (DACP), a competitive ethylene action inhibitor binds irreversibly to the ethylene receptor to reduce tissue responses to ethylene. Tomato fruit (Lycopersicon esculentum Mill cv lsquo;Rondellorsquo;) were treated with DACP at the mature green stage. Ethylene biosynthesis and respiration rate were depressed. Color changes from green to red were delayed. Compared to the control, ACC content increased and ACC oxidase activity in vivo decreased in DACP-treated fruit. Thus, decrease of ethylene production caused by DACP treatment was due to the reduction of ACC oxidase activity. The decline in ripening subsequently recovered after DACP treatment. Results from the Northern analysis for gene expression of ACC synthase and ACC oxidase, showed that expression of both genes declined in DACP-treated fruit, and then recovered. Therefore the recovery of ethylene production was due to the recovery in gene expression and activity of ACC oxidase. We conclude that the effects of DACP on ethylene biosynthesis are on expression of ACC synthase and ACC oxidase genes, and/or regulation of ACC oxidase activity.  相似文献   

7.
8.
Bufler G 《Plant physiology》1984,75(1):192-195
Apples (Malus sylvestris Mill, cv Golden Delicious) were treated before harvest with aminoethoxyvinylglycine (AVG). AVG is presumed to reversibly inhibit 1-aminocyclopropane-1-carboxylic acid (ACC) activity, but not the formation of ACC synthase. AVG treatment effectively blocked initiation of autocatalytic ethylene production and ripening of harvested apples. Exogenous ethylene induced extractable ACC synthase activity and ripening in AVG-treated apples. Removal of exogenous ethylene caused a rapid decline in ACC synthase activity and in CO2 production. The results with ripened, AVG-treated apples indicate (a) a dose-response relationship between ethylene and enhancement of ACC synthase activity with a half-maximal response at approximately 0.8 μl/l ethylene; (b) reversal of ethylene-enhanced ACC synthase activity by CO2; (c) enhancement of ACC synthase activity by the ethylene-activity analog propylene.

Induction of ACC synthase activity, autocatalytic ethylene production, and ripening of preclimacteric apples not treated with AVG were delayed by 6 and 10% CO2, but not by 1.25% CO2. However, each of these CO2 concentrations reduced the rate of increase of ACC synthase activity.

  相似文献   

9.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

10.
11.
The essential amino acid methionine is a substrate for the synthesis of S-adenosyl-methionine (SAM), that donates its methyl group to numerous methylation reactions, and from which polyamines and ethylene are generated. To study the regulatory role of methionine synthesis in tomato fruit ripening, which requires a sharp increase in ethylene production, we cloned a cDNA encoding cystathionine γ-synthase (CGS) from tomato and analysed its mRNA and protein levels during tomato fruit ripening. CGS mRNA and protein levels peaked at the “turning” stage and declined as the fruit ripened. Notably, the tomato CGS mRNA level in both leaves and fruit was negatively affected by methionine feeding, a regulation that Arabidopsis, but not potato CGS mRNA is subject to. A positive correlation was found between elevated ethylene production and increased CGS mRNA levels during the ethylene burst of the climacteric ripening of tomato fruit. In addition, wounding of pericarp from tomato fruit at the mature green stage stimulated both ethylene production and CGS mRNA level. Application of exogenous methionine to pericarp of mature green fruit increased ethylene evolution, suggesting that soluble methionine may be a rate limiting metabolite for ethylene synthesis. Moreover, treatment of mature green tomato fruit with the ethylene-releasing reagent Ethephon caused an induction of CGS mRNA level, indicating that CGS gene expression is regulated by ethylene. Taken together, these results imply that in addition to recycling of the methionine moieties via the Yang pathway, operating during synthesis of ethylene, de novo synthesis of methionine may be required when high rates of ethylene production are induced.  相似文献   

12.
BURDON  J. N.; SEXTON  R. 《Annals of botany》1990,66(1):111-120
The production of ethylene by red raspberry (Rubus idaeus L.cv. Glen Clova) fruit increased climacterically during development.The concentration of ethylene within green fruit was low butincreased substantially as fruit abscission and ripening commenced.The receptacle contained higher concentrations than the drupeletsat all stages measured. In the mature ripening fruit the ethyleneconcentrations were found to be physiologically significant,and would accelerate the abscission of large green non-abscisingfruit if supplied as a fumigant. The addition of ethylene toripe fruit did not accelerate abscission, probably because saturatinglevels occurred naturally within these fruit. Reduction of ethylenesynthesis rates using the inhibitor of ethylene production aminoethoxyvinylglycine(AVG) reduced the rate of abscission zone weakening which occursin detached large green fruit. The rate of ethylene productionwas found to be dependent on the supply of the precursor l-aminocyclopropane-l-carboxylicacid (ACC). This only accumulated to any extent in those ripefruit with high rates of ethylene production. Rubus idaeus, raspberry, abscission, fruit ripening, ethylene, aminocyclopropane-l-carboxylic acid  相似文献   

13.
The association of the level of ACC and the ethylene concentration in ripening apple fruit (Malus sylvestris Mill, var. Ben Davis) was studied. Preclimacteric apple contained small amounts of ACC and ethylene. With the onset of the climacteric and a concomitant decrease in flesh firmness, the level of ACC and ethylene concentration both increased markedly. During the postclimacteric period, ethylene concentration started to decline, but the level of ACC continued to increase. Ethylene production and loss of flesh firmness of fruits during ripening were greatly suppressed by treatments with low O2 (O2 1–3%, CO2 O%) or high CO2 (CO2 20–30%, O2 15–20%) at the preclimacteric stage. However, after 4 weeks an accumulation of ACC was observed in treated fruits when control fruit was at the postclimacteric stage. Treatment of fruit with either low O2 or high CO2 at the climacteric stage resulted in a decrease of ethylene production. However, the ACC level in fruit treated with low O2 was much higher than both control and high CO2 treated fruit; it appears that low O2 inhibits only the conversion of ACC to ethylene, resulting in an accumulation of ACC. Since CO2 inhibits ethylene production but does not result in an accumulation of ACC, it appears that high CO2 inhibits both the conversion of ACC to ethylene and the formation of ACC.  相似文献   

14.
Effect of diazocyclopentadiene on tomato ripening   总被引:2,自引:0,他引:2  
Diazocyclopentadiene (DACP) in the presence of fluorescent light delayed ripening of tomato fruits treated at the mature green (no visible red) stage. At 25 °C, ripening was delayed 10 days if DACP [185 µl/1 (gas)] was added as a single treatment and longer if DACP was added intermittently at 5-day intervals. The addition of 1000 µl/1 ethylene following DACP and light treatment did not hasten ripening. Little ripening delay was noted for fruit + DACP held in darkness. Tomatoes covered with aluminum foil so as to exclude light but not light-activated DACP, showed ripening inhibition. Apparently, the light-activated product from DACP is stable long enough to diffuse into fruit held in darkness. After an initial inhibition, ethylene production was greatly increased in tomatoes treated with DACP. Tomatoes with or without DACP treatment were held either in air or 5% O2/95% N2 for 12 days then treated with ethylene. Treatment with 5% O2 alone delayed ripening when compared to air alone, however, both groups reached 80% red color by 18 days. DACP treated fruit, whether held in air or 5% O2, still were green after 18 days and only approached 80% red color after approximately 27 days. Thus, 5% oxygen did not appear to slow the reversal of DACP inhibition of ripening.  相似文献   

15.
Tomato fruit (Lycopersicon esculentum Mill. var. V. R. Moscow) harvested at the mature green stage were ripened by treatments with ethylene, oxygen, and oxygen plus ethylene. Treatments were made under dark and light conditions. Ethylene increased the ripening and respiration rates of the tomatoes. The fruit treated with ethylene had a general increase in beta carotene and lycopene when compared with untreated controls. The per cent acid was variable from year to year in the fruit treated with ethylene. The fruit ripened in ethylene had higher concentrations of citric acid than did the untreated controls. Treatments with oxygen decreased the reducing sugars and at the high concentrations used, had no effect on the rate of lycopene synthesis. Light treatments increased the per cent acid, reducing sugars, and color of the ripened fruit. The increase in color was related to an increase in both beta carotene and lycopene. Light treatment seemed to decrease the respiration rate of the fruit not treated with ethylene. Studies usingC14O2 showed that this may be due to utilization of CO2 evolved from respiration by the green fruit in photosynthesis.  相似文献   

16.
5′-Methylthioadenosine (MTA) nucleosidase and 5-methylthioribose (MTR) kinase activities were measured in crude extracts of tomato fruits (Lycopersicon esculentum Mill cv Rutgers) during fruit development and ripening. The highest activity of MTA nucleosidase (1.2 nanomoles per milligram protein per minute) was observed in small green fruits. The activity decreased during ripening; at the overripe stage only 6.5% of the peak activity remained. MTR kinase activity was low at the small green stage and increased thereafter until it reached peak activity at the breaker stage (0.7 nanomoles per milligram protein per minute) followed by a sharp decline at the later stages of fruit ripening. 1-Amino-cyclopropane-1-carboxylic acid (ACC) levels peaked at the red stage, while ethylene reached its highest level at the light-red stage. Several analogs of MTA and MTR were tested as both enzyme and ethylene inhibitors. Of the MTA analogs examined for their ability to inhibit MTA nucleosidase, 5′-chloroformycin reduced enzyme activity 89%, whereas 5′-chloroadenosine, 5′-isobutylthioadenosine, 5′-isopropylthioadenosine, and 5′-ethylthioadenosine inhibited the reaction with MTA by about 40%. 5′-Chloroformycin and 5′-chloroadenosine inhibited ethylene production over a period of 24 hours by about 64 and 42%, respectively. Other analogs of MTA were not effective inhibitors of ethylene production, whereas aminoethoxyvinylglycine showed a 34% inhibition over the same period of time. Of the MTR analogs tested, 5-isobutylthioribose was the most effective inhibitor of both MTR-kinase (41%) and ethylene production (35%).  相似文献   

17.
Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity.  相似文献   

18.
Jiao XZ  Yip WK  Yang SF 《Plant physiology》1987,85(3):643-647
While light-grown wheat leaves produced ethylene at a low rate of <0.1 nanomoles per gram per hour and contained 1-aminocyclopropane-1-carboxylic acid (ACC) at low levels of <2.5 nanomoles per gram, etiolated wheat leaves produced ethylene at a rate of 2 nanomoles per gram per hour and accumulated concentrations of ACC at levels of 40 nanomoles per gram. Upon illumination of 8-day-old etiolated wheat seedlings with white light, the ethylene production rate increased initially, due to the activation of ethylene-forming activity, but subsequently declined to a low level (0.1 nanomoles per gram per hour) at the end of the 6-hour illumination. This light-induced decline in ethylene production rate resulted from a decline (more than 35 nanomoles per gram) in ACC level, which was accompanied by a corresponding increase in 1-(malonylamino)cyclopropane-1-carboxylic acid content. These data indicate that illumination promoted ACC malonylation, resulting in reduced ACC level and consequently reduced ethylene production. However, light did not cause any significant increase in the extractable ACC-malonyltransferase activity. The effect of continuous white light on promotion of ACC malonylation was also observed in intermittent white light or red light. A far-red light treatment following red light partially reversed the red light effect, indicating that phytochrome participates in the promotion of ACC malonylation.  相似文献   

19.
Hormonal metabolism associated with fruit development in muskmelon was investigated by measuring IAA, ABA, and ACC levels in several tissues at various stages of development. In addition, levels of conjugated IAA and ABA were determined in the same tissues. Ethylene production, which is believed to signal the ripening and senescence of mature fruit, was also measured. Ethylene production was highest in the outer tissue near the rind and gradually declined during maturation, except for a dramatic increase in all fruit tissues at the climacteric. In contrast to ethylene production, ACC levels increased during maturation and remained equal throughout the fruit until the climacteric, when levels in the outer tissues increased nearly 5-fold over levels in the inner tissues. The consistent presence of ACC indicates that ACC oxidase rather than the availability of ACC regulates ethylene production in developing fruits. ABA and ABA esters generally declined during maturation, however an increase in ABA esters associated with the outer mesocarp tissue was observed in fully mature, climacteric fruit. IAA and IAA conjugates were only found in the outer tissue near the rind, and their levels remained low until the fruit was fully mature and entering the climacteric. At that time, increased levels of conjugates were detected. The late burst of hormonal metabolism in the outer mesocarp tissue appeared to signal its degeneration and the deterioration that typically occurs in ripening fruit. The tissue-specific conjugation of IAA and ABA, in addition to the production of climacteric ethylene, may represent part of the signaling mechanism initiating ripening and eventual deterioration of tissues in muskmelon fruits.Abbreviations ABA abscisic acid - ACC 1-aminocylopropane-1-carboxylic acid - DAP days after pollination - IAA indole-3-acetic acid  相似文献   

20.
Saniewski  M.  Czapski  J.  Nowacki  J.  Lange  E. 《Biologia Plantarum》1987,29(3):199-203
Methyl jasmonate (JA-Me) at concentration of 0.5 % and 1.0 % in lanolin paste applied to the surface of postclimacteric apples cultivars McIntosh, Spartan, and Cortland inhibited ethylene production in slices of cortex with a skin cut to a depth of about 2 mm. The level of 1-aminocyclopropane-l-carboxylic acid (ACC) was decreased in tissues of apples treated with methyl jasmonate. Methyl jasmonate stimulated ethylene production in preclimacteric apples cv. McIntosh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号