首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin-coated vesicles mediate sorting and intracellular transport of membrane-bound proteins. The formation of these coats is initiated by the assembly of adaptor proteins (AP), which specifically bind to membrane cargo proteins via recognition of endocytic sorting motifs. The lipid signaling molecule phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is critical for this process, as it serves as both a targeting and regulatory factor. PI(4,5)P(2) is synthesized by type I phosphatidylinositol phosphate kinases (PIPKI). We have discovered a direct interaction between the mu2-subunit of the AP2 complex and PIPKIgamma661 via a yeast two-hybrid screen. This interaction was confirmed using both the mu2-subunit in glutathione S-transferase pulldowns and via coimmunoprecipitation of endogenous PIPKIgamma661 with the AP2 complex from HEK293 cells. The interaction is mediated, in vivo, by a tyrosine-based motif in the 26-amino acid tail of PIPKIgamma661. Because AP2 regulates endocytosis of transferrin receptor from the plasma membrane, we also examined a role for PIPKIgamma661 using a flow cytometry endocytosis assay. We observed that stable expression of wild type PIPKIgamma661 in Madin-Darby canine kidney cells enhanced transferrin uptake, whereas stable expression of kinase-dead PIPKIgamma661 had an inhibitory effect. Neither condition affected the overall cellular level of PI(4,5)P(2). RNA interference-based knockdown of PIPKIgamma661 in HeLa cells also had an inhibitory effect on transferrin endocytosis using the same assay system. Collectively, this evidence implies an important role for PIPKIgamma661 in the AP2-mediated endocytosis of transferrin.  相似文献   

2.
Cell polarization is necessary for directed migration and leukocyte recruitment to inflamed tissues. Recent progress has been made in defining the molecular mechanisms that regulate chemoattractant-induced cell polarity during chemotaxis, including the contribution of phosphoinositide 3-kinase (PI3K)-dependent phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] synthesis at the leading edge. However, less is known about the molecular composition of the cell rear and how the uropod functions during cell motility. Here, we demonstrate that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma661), which generates PtdIns(4,5)P(2), is enriched in the uropod during chemotaxis of primary neutrophils and differentiated HL-60 cells (dHL-60). Using time-lapse microscopy, we show that enrichment of PIPKIgamma661 at the cell rear occurs early upon chemoattractant stimulation and is persistent during chemotaxis. Accordingly, we were able to detect enrichment of PtdIns(4,5)P(2) at the uropod during chemotaxis. Overexpression of kinase-dead PIPKIgamma661 compromised uropod formation and rear retraction similar to inhibition of ROCK signaling, suggesting that PtdIns(4,5)P(2) synthesis is important to elicit the backness response during chemotaxis. Together, our findings identify a previously unknown function for PIPKIgamma661 as a novel component of the backness signal that regulates rear retraction during chemotaxis.  相似文献   

3.
Talin is a structural component of focal adhesion sites and is thought to be engaged in multiple protein interactions at the cytoplasmic face of cell/matrix contacts. Talin is a major link between integrin and the actin cytoskeleton and was shown to play an important role in focal adhesion assembly. Consistent with the view that talin must be activated at these sites, we found that phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) bound to talin in cells in suspension or at early stages of adhesion, respectively. When phosphoinositides were associated with phospholipid bilayer, talin/phosphoinositide association was restricted to PI4,5P(2). This association led to a conformational change of the protein. Moreover, the interaction between integrin and talin was greatly enhanced by PI4,5P(2)-induced talin activation. Finally, sequestration of PI4,5P(2) by a specific pleckstrin homology domain confirms that PI4,5P(2) is necessary for proper membrane localization of talin and that this localization is essential for the maintenance of focal adhesions. Our results support a model in which PI4,5P(2) exposes the integrin-binding site on talin. We propose that PI4,5P(2)-dependent signaling modulates assembly of focal adhesions by regulating integrin-talin complexes. These results demonstrate that activation of the integrin-binding activity of talin requires not only integrin engagement to the extracellular matrix but also the binding of PI4,5P(2) to talin, suggesting a possible role of lipid metabolism in organizing the sequential assembly of focal adhesion components.  相似文献   

4.
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIgamma661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIgamma661 and Src. The phosphorylation of Y644 results in an approximately 15-fold increase in binding affinity to the talin head domain and blocks beta-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a "molecular switch" for talin binding between PIPKIgamma661 and beta-integrin that may regulate dynamic FA turnover.  相似文献   

5.
Disruption of the presynaptically enriched polyphosphoinositide phosphatase synaptojanin 1 leads to an increase of clathrin-coated intermediates and of polymerized actin at endocytic zones of nerve terminals. These changes correlate with elevated levels of PI(4,5)P(2) in neurons. We report that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), a major brain PI(4)P 5-kinase, is concentrated at synapses. Synaptojanin 1 and PIPKIgamma antagonize each other in the recruitment of clathrin coats to lipid membranes. Like synaptojanin 1 and other proteins involved in endocytosis, PIPKIgamma undergoes stimulation-dependent dephosphorylation. These results implicate PIPKIgamma in the synthesis of a PI(4,5)P(2) pool that acts as a positive regulator of clathrin coat recruitment and actin function at the synapse.  相似文献   

6.
Synaptic vesicles (SVs) are retrieved by clathrin-mediated endocytosis at the nerve terminals. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] drives this event by recruiting the components of the endocytic machinery. However, the molecular mechanisms that result in local generation of PI(4,5)P2 remain unclear. We demonstrate here that AP-2 complex directly interacts with phosphatidylinositol 4-phosphate 5-kinase gamma661 (PIP5Kgamma661), the major PI(4,5)P2-producing enzyme in the brain. The beta2 subunit of AP-2 was found to bind to the C-terminal tail of PIP5Kgamma661 and cause PIP5Kgamma661 activation. The interaction is regulated by PIP5Kgamma661 dephosphorylation, which is triggered by depolarization in mouse hippocampal neurons. Finally, overexpression of the PIP5Kgamma661 C-terminal region in hippocampal neurons suppresses depolarization-dependent SV endocytosis. These findings provide evidence for the molecular mechanism through which PIP5Kgamma661 locally generates PI(4,5)P2 in hippocampal neurons and suggest a model in which the interaction trigger SV endocytosis.  相似文献   

7.
Collagen phagocytosis is a critical mediator of extracellular matrix remodeling. Whereas the binding step of collagen phagocytosis is facilitated by Ca2+-dependent, gelsolin-mediated severing of actin filaments, the regulation of the collagen internalization step is not defined. We determined here whether phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] regulation of gelsolin is required for collagen internalization. In gelsolin null fibroblasts transfected with gelsolin severing mutants, actin severing and collagen binding were strongly impaired but internalization and actin monomer addition at collagen bead sites were much less affected. PI(4,5)P2 accumulated around collagen during internalization and was associated with gelsolin. Cell-permeable peptides mimicking the PI(4,5)P2 binding site of gelsolin blocked actin monomer addition, the association of gelsolin with actin at phagosomes, and collagen internalization but did not affect collagen binding. Collagen beads induced recruitment of type 1 gamma phosphatidylinositol phosphate kinase (PIPK1gamma661) to internalization sites. Dominant negative constructs and RNA interference demonstrated a requirement for catalytically active PIPK1gamma661 for collagen internalization. We conclude that separate functions of gelsolin mediate sequential stages of collagen phagocytosis: Ca2+-dependent actin severing facilitates collagen binding, whereas PI(4,5)P2-dependent regulation of gelsolin promotes the actin assembly required for internalization of collagen fibrils.  相似文献   

8.
The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many actin-binding proteins and as such is an important modulator of cytoskeleton organization during cell migration, for example. In migrating cells actin remodeling is tightly regulated and localized; therefore, how the PI(4,5)P2 level is spatially and temporally regulated is crucial to understanding how it controls cell migration. Here we show that the LIM protein Ajuba contributes to the cellular regulation of PI(4,5)P2 levels by interacting with and activating the enzymatic activity of the PI(4)P 5-kinase (PIPKIalpha), the predominant enzyme in the synthesis of PI(4,5)P2, in a migration stimulus-regulated manner. In migrating primary mouse embryonic fibroblasts (MEFs) from Ajuba(-/-) mice the level of PI(4,5)P2 was decreased with a corresponding increase in the level of the substrate PI(4)P. Reintroduction of Ajuba into these cells normalized PI(4,5)P2 levels. Localization of PI(4,5)P2 synthesis and PIPKIalpha in the leading lamellipodia and membrane ruffles, respectively, of migrating Ajuba(-/-) MEFs was impaired. In vitro, Ajuba dramatically activated the enzymatic activity of PIPKIalpha while inhibiting the activity of PIPKIIbeta. Thus, in addition to its effects upon Rac activity Ajuba can also influence cell migration through regulation of PI(4,5)P2 synthesis through direct activation of PIPKIalpha enzyme activity.  相似文献   

9.
The lipid second messenger PI(4,5)P(2) modulates actin dynamics, and its local accumulation at plasmalemmal microdomains (rafts) might mediate regulation of protrusive motility. However, how PI(4,5)P(2)-rich rafts regulate surface motility is not well understood. Here, we show that upon signals promoting cell surface motility, PI(4,5)P(2) directs the assembly of dynamic raft-rich plasmalemmal patches, which promote and sustain protrusive motility. The accumulation of PI(4,5)P(2) at rafts, together with Cdc42, promotes patch assembly through N-WASP. The patches exhibit locally regulated PI(4,5)P(2) turnover and reduced diffusion-mediated exchange with their environment. Patches capture microtubules (MTs) through patch IQGAP1, to stabilize MTs at the leading edge. Captured MTs in turn deliver PKA to patches to promote patch clustering through further PI(4,5)P(2) accumulation in response to cAMP. Patch clustering restricts, spatially confines, and polarizes protrusive motility. Thus, PI(4,5)P(2)-dependent raft-rich patches enhance local signaling for motility, and their assembly into clusters is regulated through captured MTs and PKA, coupling local regulation of motility to cell polarity, and organization.  相似文献   

10.
Phosphatidylinositol 4,5 bisphosphate (PIP2) is a key lipid messenger for regulation of cell migration. PIP2 modulates many effectors, but the specificity of PIP2 signalling can be defined by interactions of PIP2‐generating enzymes with PIP2 effectors. Here, we show that type Iγ phosphatidylinositol 4‐phosphate 5‐kinase (PIPKIγ) interacts with the cytoskeleton regulator, IQGAP1, and modulates IQGAP1 function in migration. We reveal that PIPKIγ is required for IQGAP1 recruitment to the leading edge membrane in response to integrin or growth factor receptor activation. Moreover, IQGAP1 is a PIP2 effector that directly binds PIP2 through a polybasic motif and PIP2 binding activates IQGAP1, facilitating actin polymerization. IQGAP1 mutants that lack PIPKIγ or PIP2 binding lose the ability to control directional cell migration. Collectively, these data reveal a synergy between PIPKIγ and IQGAP1 in the control of cell migration.  相似文献   

11.
HIV-1 Gag is the only protein required for retroviral particle assembly. There is evidence suggesting that phosphatidylinositol phosphate and nucleic acid are essential for viruslike particle assembly. To elucidate structural foundations of interactions of HIV-1 Gag with the assembly cofactors PI(4,5)P2 and RNA, we employed mass spectrometric protein footprinting. In particular, the NHS-biotin modification approach was used to identify the lysine residues that are exposed to the solvent in free Gag and are protected from biotinylation by direct protein-ligand or protein-protein contacts in Gag complexes with PI(4,5)P2 and/or RNA. Of 21 surface lysines readily modified in free Gag, only K30 and K32, located in the matrix domain, were strongly protected in the Gag-PI(4,5)P2 complex. Nucleic acid also protected these lysines, but only at significantly higher concentrations. In contrast, nucleic acids and not PI(4,5)P2 exhibited strong protection of two nucleocapsid domain residues: K391 and K424. In addition, K314, located in the capsid domain, was specifically protected only in the presence of both PI(4,5)P2 and nucleic acid. We suggest that concerted binding of PI(4,5)P2 and nucleic acid to the matrix and nucleocapsid domains, respectively, promotes protein-protein interactions involving capsid domains. These protein-protein interactions must be involved in virus particle assembly.  相似文献   

12.
The phosphatidylinositol phosphate (PIP) kinases are a unique family of enzymes that generate an assortment of lipid messengers, including the pivotal second messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2). While members of the PIP kinase family function by catalyzing a similar phosphorylation reaction, the specificity loop of each PIP kinase subfamily determines substrate preference and partially influences distinct subcellular targeting. Specific protein-protein interactions that are unique to particular isoforms or splice variants play a key role in targeting PIP kinases to appropriate subcellular compartments to facilitate the localized generation of PI4,5P2 proximal to effectors, a mechanism key for the function of PI4,5P2 as a second messenger. This review documents the discovery of the PIP kinases and their signaling products, and summarizes our current understanding of the mechanisms underlying the localized generation of PI4,5P2 by PIP kinases for the regulation of cellular events including actin cytoskeleton dynamics, vesicular trafficking, cell migration, and an assortment of nuclear events.  相似文献   

13.
Assembly of E-cadherin-based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIgamma also interacts with the mu subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIgamma or disruption of PIPKIgamma binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIgamma binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIgamma serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.  相似文献   

14.
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key lipid messenger that regulates myriad diverse cellular signaling pathways. To ensure specificity in disparate cellular events, PIP2 must be localized to specific sub-cellular sites. At PIP2-regulated focal adhesion (FA) sites, such localization is in part mediated via the recruitment and activation of PIP2-producing enzyme, type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma), by a phosphotyrosine binding (PTB) domain of talin. Transient phosphorylation of PIPKIgamma at Y644 regulates the interaction and efficient FA targeting of PIPKIgamma; however, the underlying structural basis remains elusive. We have determined the NMR structure of talin-1 PTB in complex with the Y644-phosphorylated PIPKIgamma fragment (WVpYSPLH). As compared to canonical PTB domains that typically recognize the NPXpY turn motif from a variety of signaling proteins, our structure displays an unusual non-NPXpY-based recognition mode for talin-1 PTB where K(357)RW in beta5 strand forms an antiparallel beta-sheet with the VpYS of PIPKIgamma. A specific electrostatic triad between K357/R358 of talin-1 PTB and the pY644 of PIPKIgamma was observed, which is consistent with the mutagenesis and isothermal calorimetry data. Combined with previous in vivo data, our results provide a framework for understanding how phosphorylation of Y644 in PIPKIgamma promotes its specific interaction with talin-1, leading to efficient local synthesis of PIP2 and dynamic regulation of integrin-mediated FA assembly.  相似文献   

15.
NMDA receptor activation leads to clathrin-dependent endocytosis of postsynaptic AMPA receptors. Although this process controls long-term depression (LTD) induction in the hippocampus, how it is regulated by neuronal activities is not completely clear. Here, we show that Ca2? influx through the NMDA receptor activates calcineurin and protein phosphatase 1 to dephosphorylate phosphatidylinositol 4-phosphate 5-kinaseγ661 (PIP5Kγ661), the major phosphatidylinositol 4,5-bisphosphate (PI(4,5)P?)-producing enzyme in the brain. Bimolecular fluorescence complementation analysis revealed that the dephosphorylated PIP5Kγ661 became associated with the clathrin adaptor protein complex AP-2 at postsynapses in situ. NMDA-induced AMPA receptor endocytosis and low-frequency stimulation-induced LTD were completely blocked by inhibiting the association between dephosphorylated PIP5Kγ661 and AP-2 and by overexpression of a kinase-dead PIP5Kγ661 mutant in hippocampal neurons. Furthermore, knockdown of PIP5Kγ661 inhibited the NMDA-induced AMPA receptor endocytosis. Therefore, NMDA receptor activation controls AMPA receptor endocytosis during hippocampal LTD by regulating PIP5Kγ661 activity at postsynapses.  相似文献   

16.
Cofilin is a key player in actin dynamics during cell migration. Its activity is regulated by (de)phosphorylation, pH, and binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Here, we here use a human cofilin-1 (D122K) mutant with increased binding affinity for PI(4,5)P2 and slower release from the plasma membrane to study the role of the PI(4,5)P2–cofilin interaction in migrating cells. In fibroblasts in a background of endogenous cofilin, D122K cofilin expression negatively affects cell turning frequency. In carcinoma cells with down-regulated endogenous cofilin, D122K cofilin neither rescues the drastic morphological defects nor restores the effects in cell turning capacity, unlike what has been reported for wild-type cofilin. In cofilin knockdown cells, D122K cofilin expression promotes outgrowth of an existing lamellipod in response to epidermal growth factor (EGF) but does not result in initiation of new lamellipodia. This indicates that, next to phospho- and pH regulation, the normal release kinetics of cofilin from PI(4,5)P2 is crucial as a local activation switch for lamellipodia initiation and as a signal for migrating cells to change direction in response to external stimuli. Our results demonstrate that the PI(4,5)P2 regulatory mechanism, that is governed by EGF-dependent phospholipase C activation, is a determinant for the spatial and temporal control of cofilin activation required for lamellipodia initiation.  相似文献   

17.
Tumor suppressor PTEN mediates sensing of chemoattractant gradients   总被引:41,自引:0,他引:41  
Iijima M  Devreotes P 《Cell》2002,109(5):599-610
Shallow gradients of chemoattractants, sensed by G protein-linked signaling pathways, elicit localized binding of PH domains specific for PI(3,4,5)P3 at sites on the membrane where rearrangements of the cytoskeleton and pseudopod extension occur. Disruption of the PI 3-phosphatase, PTEN, in Dictyostelium discoideum dramatically prolonged and broadened the PH domain relocation and actin polymerization responses, causing the cells lacking PTEN to follow a circuitous route toward the attractant. Exogenously expressed PTEN-GFP localized to the surface membrane at the rear of the cell. Membrane localization required a putative PI(4,5)P2 binding motif and was required for chemotaxis. These results suggest that specific phosphoinositides direct actin polymerization to the cell's leading edge and regulation of PTEN through a feedback loop plays a critical role in gradient sensing and directional migration.  相似文献   

18.
Integrin-mediated cell adhesion cooperates with growth factor receptors in the control of cell proliferation, cell survival, and cell migration. One mechanism to explain these synergistic effects is the ability of integrins to induce phosphorylation of growth factor receptors, for instance the epidermal growth factor (EGF) receptor. Here we define some aspects of the molecular mechanisms regulating integrin-dependent EGF receptor phosphorylation. We show that in the early phases of cell adhesion integrins associate with EGF receptors on the cell membrane in a macromolecular complex including the adaptor protein p130Cas and the c-Src kinase, the latter being required for adhesion-dependent assembly of the macromolecular complex. We also show that the integrin cytoplasmic tail, c-Src kinase, and the p130Cas adaptor protein are required for phosphorylation of EGF receptor in response to integrin-mediated adhesion. We show that integrins induce phosphorylation of EGF receptor on tyrosine residues 845, 1068, 1086, and 1173, but not on residue 1148, a major site of phosphorylation in response to EGF. In addition we find that integrin-mediated adhesion increases the amount of EGF receptor expressed on the cell surface. Therefore these data indicate that integrin-mediated adhesion induces assembly of a macromolecular complex containing c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosine residues.  相似文献   

19.
In chemotaxing cells, localization of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) to the leading edge of the cell sets the direction and regulates the formation of pseudopods at the anterior. We show that the lipid phosphatase activity of PTEN mediates chemotaxis and that the sharp localization of PI(3,4,5)P3 requires localization of PTEN to the rear of the cell. Our data suggest that a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding motif at the N terminus of PTEN serves the dual role of localizing the enzyme to the membrane and regulating its activity. Mutations in this motif enhance catalytic activity but render the enzyme inactive in vivo by preventing membrane association. The key role of this motif may explain the heretofore puzzling tumor-suppressing mutations occurring within the PI(4,5)P2 binding motif. On the other hand, the localization of PTEN does not depend on its phosphatase activity, the actin cytoskeleton, or the intracellular level of PI(3,4,5)P3, suggesting that events controlling localization are upstream of phosphoinositide signaling.  相似文献   

20.
The loss of function of the tumor suppressor gene TSC2 and its protein product tuberin promotes the development of benign lesions by stimulating cell growth, although the role of tuberin in regulating cell migration and metastasis has not been characterized. In addition, the role of phosphatidylinositol 3-kinase (PI 3-kinase), an important signaling event regulating cell migration, in modulating tuberin-deficient cell motility remains unknown. Using a tuberin-deficient rat smooth muscle cell line, ELT3, we demonstrate that platelet-derived growth factor (PDGF) stimulates cell migration by 3.2-fold, whereas vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-alpha, and basic fibroblast growth factor (bFGF) increase migration by 2.1-, 2.1-, and 2.6-fold, respectively. Basal and PDGF-induced migration in tuberin-deficient ELT3, ELT4, and ERC15 cells was not significantly different from that of tuberin-positive transformed rat kidney epithelial 2, airway smooth muscle, and pulmonary arterial vascular smooth muscle cells. Expression of tuberin in tuberin-deficient ELT3 cells also had little effect on cell migration. In parallel experiments, the role of PI 3-kinase activation in ELT3 cell migration was investigated. LY-294002, a PI 3-kinase inhibitor, decreased PDGF-induced migration in a concentration-dependent manner with an IC(50) of approximately 5 microM. LY-294002 also abrogated ELT3 cell migration stimulated by bFGF and TGF-alpha but not by VEGF and phorbol 12-myristate 13-acetate. Furthermore, transient expression of constitutively active PI 3-kinase (p110*) was sufficient to induce ELT3 cell migration. However, the migration induced by p110* was less than that induced by growth factors, suggesting other signaling pathways are also critically important in modulating growth factor-induced cell migration. These data suggest that PI 3-kinase is required for growth factor-induced cell migration and loss of tuberin appears to have little effect on cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号