首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilization of the sea urchin egg triggers a Ca(2+)-dependent cortical granule exocytosis and cytoskeletal reorganization, both of which are accompanied by an accelerated protein synthesis. The signaling mechanisms leading to these events are not completely understood. The possible role of Rho GTPases in sea urchin egg activation was studied using the Clostridium botulinum C3 exotoxin, which specifically ADP-ribosylates Rho proteins and inactivates them. We observed that incubation of eggs with C3 resulted in in situ ADP-ribosylation of Rho. Following fertilization, C3-treated eggs were capable of performing cortical granule exocytosis but not the first cytokinesis. C3 caused in both unfertilized eggs and early embryos alterations in the state of actin polymerization and inhibition of the spindle formation. Moreover, C3 diminished markedly the rate of protein synthesis. These findings suggested that Rho is involved in regulating the acceleration of protein synthesis that accompanies the egg activation by sperm.  相似文献   

2.
We compared neurotoxicity of piperine and low K+on cultured cerebellar granule neurons. As considered from lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide reduction, both piperine and shifting from high K+(25 mM) to low K+(5.4 mM) were cytotoxic to cerebellar granule neurons. Protein synthesis inhibitors, cycloheximide and anisomycin, and an endonuclease inhibitor, aurintricarboxylic acid, were protective against low K+-induced neuronal death whereas they were ineffective against that induced by piperine. D--tocopherol, trolox, and a spin trap 3,3,5,5-tetramethyl-l-pyrroline-l-oxide were protective against piperine neurotoxicity whereas they had no effect on that induced by low K+. These results suggest that piperine and low K+may exert neurotoxic effects on cerebellar granule neurons through different mechanisms. Death of cerebellar granule neurons induced by piperine may be mediated by non-apoptotic mechanisms and may involve membrane lipid peroxidation and/or free radical generation.  相似文献   

3.
Abstract A study has been initiated to further clarify the role of H2O and protein in maintaining a functional amorphous state of poly-β-hydroxyalkanoates (PHAs) in the living cell. It has been clearly demonstrated that the ordered hydrophobic hydrocarbon chains of these materials crystallize at varying rates, depending on repeating unit heterogeneity, subsequent to the removal of the polymer granule from the cell and after solvent extraction. Both isolation and extraction procedures remove water and some protein from the polymer granule, and the polymer crystallizes. We have developed a procedure for the isolation of poly-β-hydroxyoctanoate (PHO) containing granules that maintain their "in vivo" fluid, amorphous and functional state with water and proteins intact. These purified granules have been observed and their purity determined by 'in vivo' Nomarski computer-enhanced imaging light microscopy. Both this technique and low temperature rapid freeze-fracture electron microscopy have demonstrated an organized para-crystalline network of proteins on the surface of the granule. The structural role of these proteins in maintaining granule integrity and function both in the cell and after granule isolation is discussed. It is suggested that these procedures may permit in vitro studies of the mechanisms of synthesis and degradation of PHAs in a variety of polyester producing microbial systems.  相似文献   

4.
The mechanisms underlying starch granule initiation remain unknown. We have recently reported that mutation of soluble starch synthase IV (SSIV) in Arabidopsis thaliana results in restriction of the number of starch granules to a single, large, particle per plastid, thereby defining an important component of the starch priming machinery. In this work, we provide further evidence for the function of SSIV in the priming process of starch granule formation and show that SSIV is necessary and sufficient to establish the correct number of starch granules observed in wild-type chloroplasts. The role of SSIV in granule seeding can be replaced, in part, by the phylogenetically related SSIII. Indeed, the simultaneous elimination of both proteins prevents Arabidopsis from synthesizing starch, thus demonstrating that other starch synthases cannot support starch synthesis despite remaining enzymatically active. Herein, we describe the substrate specificity and kinetic properties of SSIV and its subchloroplastic localization in specific regions associated with the edges of starch granules. The data presented in this work point to a complex mechanism for starch granule formation and to the different abilities of SSIV and SSIII to support this process in Arabidopsis leaves.  相似文献   

5.
Amyloplast-targeted green fluorescent protein (GFP) was used to monitor amyloplast division and starch granule synthesis in the developing endosperm of transgenic rice. Two classical starch mutants, sugary and shrunken, contain reduced activities of isoamylase1 (ISA1) and cytosolic ADP-glucose pyrophosphorylase, respectively. Dividing amyloplasts in the wild-type and shrunken endosperms contained starch granules, whereas those in sugary endosperm did not contain detectable granules, suggesting that ISA1 plays a role in granule synthesis at the initiation step. The transition from phytoglycogen to sugary-amylopectin was gradual in the boundary region between the inner and outer endosperms of sugary. These results suggest that the synthesis of sugary-amylopectin and phytoglycogen involved a stochastic process and that ISA1 activity plays a critical role in the stochastic process in starch synthesis in rice endosperm. The reduction of cytosolic ADP-glucose pyrophosphorylase activity in shrunken endosperm did not inhibit granule initiation but severely restrained the subsequent enlargement of granules. The shrunken endosperm often developed pleomorphic amyloplasts containing a large number of underdeveloped granules or a large cluster of small grains of amyloplasts, each containing a simple-type starch granule. Although constriction-type divisions of amyloplasts were much more frequent, budding-type divisions were also found in the shrunken endosperm. We show that monitoring GFP in developing amyloplasts was an effective means of evaluating the roles of enzymes involved in starch granule synthesis in the rice endosperm.  相似文献   

6.
Transgenic potatoes expressing reduced levels of granule-bound starch synthase I (GBSSI) have been used to investigate whether the synthesis of amylose occurs at the surface of the starch granule or within the matrix formed by the synthesis and organization of amylopectin. Amylose in these potatoes is wholly or largely confined to a central region of the granule. Consequently this core region stains blue with iodine whereas the peripheral zone stains red. By making extensive measurements of the relative sizes of the granules and their blue-staining cores in tubers over a range of stages of development, we have established that the blue core increases in size as the granule grows. The extent of the increase in size of the blue core is greater in potatoes with higher levels of GBSSI. These data show that amylose synthesis occurs within the matrix of the granule, and are consistent with the idea that the space available in the matrix may be an important determinant of the amylose content of storage starches.  相似文献   

7.
Induction of the 70-kDa heat shock protein, hsp70, was evaluated in cultured cerebellar astrocytes and granule cell neurons subjected to a hyperthermic stress, using a monoclonal antibody and an oligonucleotide probe that selectively recognize stress-inducible species of hsp70-related proteins and RNAs, respectively. Immunoblots of cultures enriched in either granule cells or astrocytes, and immunocytochemical localization studies in cocultures of these cell types, demonstrated that hsp70 induction was restricted to the astrocyte population. Amino acid incorporation experiments showed little difference in the loss and recovery of overall protein synthesis activity in these two cell types following transient hyperthermic stress. RNA blot hybridizations confirmed the preferential glial induction of hsp70. In vivo immunocytochemical studies in brains of adult rats following hyperthermia were consistent with earlier observations that suggested a primarily glial and vascular localization of the heat shock response in most brain regions, although the intense immunoreactivity in the cerebellar granule cell layer suggests that there is induction of hsp70 in these neurons under in vivo conditions. These results suggest the potential value of such defined cell cultures in identifying mechanisms responsible for differences in the heat shock response of various cell types in vitro, and in revealing factors that may account for the apparent absence of the stress response in cultured cerebellar granule cell neurons.  相似文献   

8.
V I Utekhin 《Tsitologiia》1979,21(1):21-24
The ultrastructure of B-cells in the rat pancreatic islets has been studied under various experimental conditions (thyroidectomy, continuous thyroxine treatment, regeneration after partial pancreatectomy, thyroidectomy with partial pancreatectomy, partial pancreatectomy, partial pancreatectomy with continuous thyroxine treatment). Five types of B-cells have been distinguished. It has been supposed that "light" B-cell 1 is related to the stage of secretory granule extrusion, "light" B-cell 2 reflects the extrusion of secretory material and the early stages of secretory granule synthesis; "dark" B-cell 1 is involved in the intensive synthesis, formation and extrusion of secretory material, and "dark" B-cell 2 in the intensive secretory granule synthesis, formation and storage.  相似文献   

9.
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum-based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA-producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA-accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA-producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well-explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.  相似文献   

10.
Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the alpha subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2alpha, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts. In addition, HRI expression was required for stress granule formation and cellular survival after arsenite treatment. In vivo studies elucidated a fundamental requirement for HRI in murine survival upon acute arsenite exposure. The results demonstrated an essential role for HRI in mediating arsenite stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha, inhibition of protein synthesis, stress granule formation, and survival.  相似文献   

11.
Although oocytes from prepubertal animals are found less competent than oocytes from adults, the underlying mechanisms are poorly understood. Using the mouse oocyte model, this paper has tested the hypothesis that the developmental potential of prepubertal oocytes is compromised due mainly to their impaired potential for glutathione synthesis. Oocytes from prepubertal and adult mice, primed with or without eCG, were matured in vitro and assessed for glutathione synthesis potential, oxidative stress, Ca2+ reserves, fertilization and in vitro development potential. In unprimed mice, abilities for glutathione synthesis, activation, male pronuclear formation, blastocyst formation, cortical granule migration and polyspermic block were all compromised significantly in prepubertal compared to adult oocytes. Cysteamine and cystine supplementation to maturation medium significantly promoted oocyte glutathione synthesis and blastocyst development but difference due to maternal age remained. Whereas reactive oxygen species (ROS) levels increased, Ca2+ storage decreased significantly in prepubertal oocytes. Levels of both catalytic and modifier subunits of the γ-glutamylcysteine ligase were significantly lower in prepubertal than in adult oocytes. Maternal eCG priming improved all the parameters and eliminated the age difference. Together, the results have confirmed our hypothesis by showing that prepubertal oocytes have a decreased ability to synthesize glutathione leading to an impaired potential to reduce ROS and to form male pronuclei and blastocysts. The resulting oxidative stress decreases the intracellular Ca2+ store resulting in impaired activation at fertilization, and damages the microfilament network, which affects cortical granule redistribution leading to polyspermy.  相似文献   

12.
At least two biologically significant responses are triggered by the crosslinking of the T-cell receptor (TcR) on the surface of cloned cytotoxic T lymphocytes (CTL): synthesis and secretion of macrophage-activating factor(s) (MAF) that can be attributed to interferon-gamma (IFN) and release of preformed cytolytic granules. We directly compared the molecular requirements for synthesis and secretion of IFN and secretion of granule enzymes triggered in the same cell by the same activating ligand (antigen or monoclonal antibody (mAb) to TcR). An increase in the surface density of activating ligand (immobilized anti-TcR mAb) enhanced both secretion of IFN and secretion of granules. Secretion of IFN occurred immediately after synthesis: only low (but detectable) levels of IFN were detected in cell cytosolic or particulate fractions isolated from Percoll gradients of lysed CTL, while very high levels of IFN were found in the stimulated CTL culture fluids. Inhibitors of RNA synthesis and protein synthesis blocked secretion of IFN, but did not inhibit release of preformed cytolytic granules. The requirement for TcR crosslinking in triggering both secretion of granules and secretion of IFN from CTL was pharmacologically reproduced by the synergistic action of PMA, a protein kinase C activator, and the Ca2+ ionophore A23187. Both secretion of IFN and secretion of granules were absolutely dependent upon extracellular Ca2+: EGTA completely blocked both TcR- and PMA/A23187-induced secretion of IFN and exocytosis of granules. These studies suggest that similar molecular mechanisms are involved in secretion of newly synthesized IFN and secretion of preformed cytolytic granules. One notable difference between the molecular requirements for the two secretory events was a much lower concentration requirement for PMA for IFN synthesis and secretion than for granule secretion in the synergistic interactions with A23187. Implications of these studies for the exocytosis model of cell-mediated cytotoxicity are discussed.  相似文献   

13.
Watanabe D  Nakanishi S 《Neuron》2003,39(5):821-829
In the cerebellar circuit, Golgi cells are thought to contribute to information processing and integration via feedback mechanisms. In these mechanisms, dynamic modulation of Golgi cell excitability is necessary because GABA from Golgi cells causes tonic inhibition on granule cells. We studied the role and synaptic mechanisms of postsynaptic metabotropic glutamate receptor subtype 2 (mGluR2) at granule cell-Golgi cell synapses, using whole-cell recording of green fluorescent protein-positive Golgi cells of wild-type and mGluR2-deficient mice. Postsynaptic mGluR2 was activated by glutamate from granule cells and hyperpolarized Golgi cells via G protein-coupled inwardly rectifying K+ channels (GIRKs). This hyperpolarization conferred long-lasting silencing of Golgi cells, the duration and extents of which were dependent on stimulus strengths. Postsynaptic mGluR2 thus senses inputs from granule cells and is most likely important for spatiotemporal modulation of mossy fiber-granule cell transmission before distributing inputs to Purkinje cells.  相似文献   

14.
Prokaryotes and eukaryotes synthesize long chains of orthophosphate, known as polyphosphate (polyP), which form dense granules within the cell. PolyP regulates myriad cellular functions and is often localized to specific subcellular addresses through mechanisms that remain undefined. In this study, we present a molecular-level analysis of polyP subcellular localization in the model bacterium Caulobacter crescentus. We demonstrate that biogenesis and localization of polyP is controlled as a function of the cell cycle, which ensures regular partitioning of granules between mother and daughter. The enzyme polyphosphate kinase 1 (Ppk1) is required for granule production, colocalizes with granules, and dynamically localizes to the sites of new granule synthesis in nascent daughter cells. Localization of Ppk1 within the cell requires an intact catalytic active site and a short, positively charged tail at the C-terminus of the protein. The processes of chromosome replication and segregation govern both the number and position of Ppk1/polyP complexes within the cell. We propose a multistep model in which the chromosome establishes sites of polyP coalescence, which recruit Ppk1 to promote the in situ synthesis of large granules. These findings underscore the importance of both chromosome dynamics and discrete protein localization as organizing factors in bacterial cell biology.  相似文献   

15.
Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308   总被引:1,自引:0,他引:1  
The effects of nitrogen limitation and recovery on nitrogen-containing macromolecules were followed in the cyanobacterium Aphanocapsa 6308. Removal of nitrogen from growth media triggers the degradation of the endogenous nitrogen reserves phycocyanin and cyanophycin granule polypeptide in the cyanobacterium Aphanocapsa 6308. Nitrogen recovery involves immediate synthesis of cyanophycin granule polypeptide with peak levels of 5–12% of cell dry weight found 8–12 h after a utilizable nitrogen source is added. A rapid decrease in cyanophycin granule polypeptide level then occurs and the level remains low even in light-limited stationary growth with all nitrogen sources tested except nitrate and ammonia. Protein and phycocyanin recoveries began 3 h after a utilizable nitrogen source was added. Data suggest continuous activity of the enzyme system synthesizing cyanophycin granule polypeptide in nitrogen-limited cells, but synthesis of a degrading system only after nitrogen recovery begins.Nonstandard Abbreviations CGP Cyanophycin granule polypeptide - CAP chloramphenicol - PC phycocyanin To whom offprint requests should be sent  相似文献   

16.
G R Bowman  A P Turkewitz 《Genetics》2001,159(4):1605-1616
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.  相似文献   

17.
Cerebellar granule neurons grown in high potassium undergo rapid apoptosis when switched to medium containing 5 mm potassium, a stimulus mimicking deafferentation. This cell death can be blocked by genetic deletion of Bax, a member of the pro-apoptotic Bcl-2 family, cycloheximide an inhibitor of macromolecular synthesis or expression of dominant-negative c-jun. These observations suggest that Bax activation is the result of c-jun target gene(s) up-regulation following trophic withdrawal. Candidate genes include the BH3-only Bcl-2 family members Dp5 and Bim. The molecular mechanisms underlying granule cell neuronal apoptosis in response to low potassium were investigated using CEP-1347 (KT7515), an inhibitor of the MLK family of JNKKK. CEP-1347 provided protection of potassium-serum-deprived granule cells, but such neuroprotection was not long term. The incomplete protection was not due to incomplete blockade of the JNK signaling pathway because c-jun phosphorylation as well as induction of c-jun RNA and protein were completely blocked by CEP-1347. Following potassium-serum deprivation the JNKK MKK4 becomes phosphorylated, an event blocked by CEP-1347. Cells that die in the presence of CEP-1347 activate caspases; and dual inhibition of caspases and MLKs has additive, not synergistic, effects on survival. A lack of synergism was also seen with the p38 inhibitor SB203580, indicating that the neuroprotective effect of the JNK pathway inhibitor cannot be explained by p38 activation. Activation of the JNK signaling pathway seems to be a key event in granule cell apoptosis, but these neurons cannot survive long term in the absence of sustained PI3 kinase signaling.  相似文献   

18.
Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.  相似文献   

19.
In their review, Langley and Grant (1997) investigate the question whether mechanisms of exocytosis are neurotransmitter specific. There is now much evidence that the mechanisms governing the exocytosis of the two principal storage organelles—granules (large dense core vesicles) and electron-lucent vesicles—differ. But much less is known concerning potential differences in the release mechanisms of electron-lucent vesicles that store different types of fast neurotransmitters or of granules in different types of neurons. It is an open question whether there is a unifying control mechanism for the exocytosis of, for example, a peptide-containing granule of a glutamatergic neuron, a chromaffin granule, a noradrenergic granule or a granule from a neurosecretory neuron in the pituitary. The small electron-lucent synaptic vesicles of various kind apparently share common molecular components of regulated release. They carry the calcium sensor synaptotagmin, small GTP-binding proteins of the rab3 group or the v-SNARE synaptobrevin. Nevertheless, there may be differences in the regulatory mechanisms. This concerns the type of calcium channel involved or the absence of some of the presynaptic molecules such as rab3a, synapsin I or the t-SNAREs SNAP-25 or syntaxin from distinct types of neurons or sensory cells.  相似文献   

20.
The identification of a non-bilayer phospholipid storage in the secretory granule and the linking of the eicosanoid production with the release of histamine have prompted us to examine whether the secretory granule may also serve as both the source as well as the site of prostaglandin synthesis during exocytosis. By exposing the contents of purified granules to exogenous arachidonic acid at neutral pH, we observed the rapid formation of many eicosanoids. The presence of prostaglandins E2, D2 and F2a were identified. The kinetics of E2 formation was also followed. The localization of the arachidonic acid cascade to the secretory granule explains why the production of eicosanoids is so intimately tied to the process of granule exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号