首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of delta mu H+ for transport of K+ via K(+)-ionophore and H(+)-K(+)-pump was studied. It was shown that the operation of the pump was decelerated by oxidant ferrycyanide, whereas sulfhydryl reagent dithiothreitol (DTT) drastically accelerated ATP driven ion exchange. Introduction of protonophore CCCP into the medium completely blocked the pump operation. However, the addition of DTT after CCCP restored the high level activity of the pump. At the same time DTT was unable to restore K+ accumulation after CCCP in aerobically grown bacteria for which the K+ uptake was performed across the electrical field gradient. Thus it was established that delta mu H+ was necessary for ATP driven ionic systems as a regulator of the membrane redox state.  相似文献   

2.
The N,N'-dicyclohexylcarbodiimide sensitive exchange of 2H+ of a cell for K+ of medium stable to pH, K+ activity and temperature changes has been discovered in anaerobically grown gram-negative Escherichia coli, Salmonella typhimurium. S. enteritidis, Proteus mirabilis, P. vulgaris, anaerobic gram-positive bacteria Streptococcus faecalis, Lactobacillus salivarius, L. lactis in the presence of exogenic energy source. This exchange in gram-negative bacteria is operating only at increase of medium osmolarity. The high K+ distribution between cell and medium has been reached during the exchange of 2H+ for one K+ and the corresponding potassium equilibrium potential is much more than the measured delta psi. In aerobically grown E. coli, S. typhimurium, Brevibacterium flavum and aerobic Micrococcus luteus exchange of 2H+ for K+ does not take place, the K+ distribution is lower and in good conformity with the measured delta psi. It is assumed that exchange of 2H+ for K+ in anaerobic bacteria is carried out by the H+-ATPase complex and the Trk (or Trk-like) system of K+ absorption united into the same membrane supercomplex which functions as the H+-K+-pump and supports the high K+ distribution between cell and medium.  相似文献   

3.
It was shown that DCCD-sensitive ATPase activity of isolated membranes and preparations of F1F0 only from anaerobically grown E. coli depended on K+ activity. F1F0 include two additional proteins which correspond to the Trk system. The data improve the possibility to form supercomplex (F1F0-Trk) functioning as the H(+)-K(+)-pump.  相似文献   

4.
H+-K+-exchange via the Trk-like system of K+ accumulation takes place in anaerobically grown S. typhimurium LT-2 with stable ratio of DCC-sensitive ionic fluxes, equal to 2H+ of a cell for one K+ of the medium. This exchange is now observed in the mutant S. typhimurium TH-31 with unfunctional H+-ATPase. H+-K+-exchange in aerobically grown S. typhimurium LT-2 has unstable ratio of ionic fluxes. The rate of K+ uptake in anaerobically grown bacteria is higher than that in the aerobically grown ones. Q10 is about 1.8 both for H+ transfer and K+ uptake in anaerobically grown bacteria, but it is 1.7 and 0.9 respectively in the aerobically grown ones. Delta psi is not changed by different temperatures both in anaerobically and aerobically grown bacteria. The distribution of K+ in anaerobically grown bacteria is higher than 10(3) and the potassium equilibrium potential is much higher than the measured delta psi. In aerobically grown bacteria the distribution of K+ is in good conformity with the measured delta psi. H+ and K+ transport in anaerobically grown cells is likely to proceed by the same mechanism, which includes H+-ATPase and the Trk-like system. In aerobically grown bacteria these transport systems work separately, and the Trk-like system as K+-ionophore serving for K+ uptake across the electrical field on the membrane.  相似文献   

5.
Vardanian V  Trchunian A 《Biofizika》1998,43(6):1026-1029
The H(+)-K(+)-exchange in E.coli grown under anaerobic conditions at temperatures from 17 to 37 degrees C was studied. The Arrhenius plots for both the N,N'-dicyclohexylcarbodiimide-sensitive release of H+ and K+ uptake by cells transferred into a fresh medium containing a carbon source (glucose) are nonlinear. The activation energy values for the transport of these cations at different temperatures significantly differ. It is shown that as the temperature decreases, the accumulation of K+ by cells is reduced. In this process, the initial rate of K+ absorption through the TrkA system, the time of accumulation of these cations by cells and the osmosensitivity of K+ uptake substantially decrease. At temperatures below 20 degrees C, the absorption becomes insensitive to the secondary osmoshock. However, the stoichiometry of N,N'-dicyclohexylcar-bodiimide-sensitive cation fluxes remains unchanged and is equal to 2H+:K+. It is assumed that the H(+)-K(+)-exchange proceeds by the operation of an ensemble of oligomers, formed from the protomers of F0F1 and TrkA, which rearrange by the action of temperature, whereas F0F1 and TrkA in each protomer do not change.  相似文献   

6.
Mechanisms of participation of Na+K(+)-pump in regulation of the brown adipose tissue are discussed. It is settled that the increase in ATP hydrolysis by Na(+)-K(+)-ATPase is not a dominating factor of thermogenesis activation. It is assumed that the Na(+)-K(+)-pump, through the intracellular K+ concentration, serves a chain relating proliferation and thermogenesis of adipocytes.  相似文献   

7.
In a previous work (Trchounian et al., Biol. Membrany 16:416-428 (1999) (in Russian)) we reported the interrelations between production of H2 and H+-K+ exchange in fermenting Escherichia coli grown under anaerobic conditions at pH 7.5. The ion fluxes had stable stoichiometry 2H+/K+ and were N,N'-dicyclohexylcarbodiimide (DCC)-inhibitable at different external pH and K+ activity. In the present study, the H2 production was further studied in fermenting bacteria grown at pH 7.5 or 6.5. The H2 production was inhibited by DCC and did not occur if bacteria were grown at pH 7.5 in a medium containing formate or upon hypoosmotic stress. The H2 production was not sensitive to osmotic stress when bacteria were grown at pH 6.5. Formation of H2 and 2H+/K+ exchange were not observed in mutants with deletions of the hyfoperon genes, encoding membrane-associated hydrogenase 4. K+ influx in these mutants was not sensitive to valinomycin, in contrast to the K+ influx in the parental strain. If grown at pH 6.5, the mutants produced H2 and carried out 2H+/K+ exchange, when subjected to the hyperosmotic stress. The results suggest a participation of hydrogenase 4 in the production of H2 and proton-potassium exchange in fermenting E. coli grown at pH 7.5. In bacteria grown at pH 6.5 or in a medium containing formate, another membrane-bound hydrogenase, namely hydrogenase 3, may be responsible for the H2 production.  相似文献   

8.
New data are presented on the organization of H+-pumps in plasma membranes of cells of bacteria fungi, plants and animals. It is shown that H+-ATPase of bacteria differs in principle from H+-ATPases of plasma membranes of other organisms. The transport H+, K+-ATPase functioning in cells of mucous membrane of the animal stomach as an electroneutral H+-pump is similar by its properties to Na+, K+-ATPase of plasma membranes of animal cells. H+-ATPase of plasma membranes in cells of fungi and higher plants which functions as an electrogenic H+-pump differs essentially from H+-ATPases of F0 X F1-type. Distribution of H+-ATPases in cells of different organisms and their evolution are under discussion.  相似文献   

9.
The interaction of H+-ATPase complex F1 X F0 with the Trk system of K+ accumulation in E. coli grown quasi-anaerobically in pepton media with glucose (anaerobia) and aerobically in the salt medium with succinate (aerobia) treated with cyanide was studied. The ratio of H+ fluxes via F1 X F0 and K+ fluxes via the Trk system is stable and equals 2 in anaerobia and is changed from 0.5 to 5.0 in aerobia treated with cyanide in response to pH variation, K+ activity and temperature variations. Q10 is about 2.8 both for F1 X F0 and the Trk system in anaerobia, but 2.4 and 1.0 respectively in aerobia. K+ distribution in anaerobia reaches high values, K+ equilibrium potential is much higher than the measured membrane potential. K+ distribution in aerobia is smaller, which is in conformity with the measured membrane potential. Structural association of F1 X F0 and the Trk system with the formation of H+--K+-pump is assumed to take place in anaerobia, and separate operation of these systems occurs in aerobia, transfer of K+ via Trk system being energized by the electric field on the membrane.  相似文献   

10.
Bacteriophages P22 and dp8 cause the membrane potential depolarization for 10-30 mV, reversal rapid H+ influx into bacteria and K+ exit from S. typhimurium LT2, these effects depend on infection plural and are observed only in the presence of Ca+2 in the medium. delta psi depolarization and K+ efflux induced by phage dp8 are increased with the growth of Mg+2 concentration from 0 to 2 mM. Changes of delta pH and also Na+,Ca+2 concentrations are not observed. In the presence of glucose phage infection leads to changes in H(+)-K(+)-exchange. The phages P22 and dp8 adsorption on bacteria causes changes in the form or turn of the channels in S. typhimurium membrane.  相似文献   

11.
Poladian A  Trchunian A 《Biofizika》2011,56(4):684-687
The transport of protons and potassium ions across the membranes of the bacteria Enterococcus hirae growing in an alkaline medium (pH 8.0) or under experimental conditions (pH 7.5) during glucose fermentation accomplished by a KtrI-system of absorption of potassium ions, which can interact with F0F1-ATPase to form at H(+)-K(+)-pump, has been studied. It was found on cells with a high membrane permeability that the administration of nicotinamideadenine dinucleotides results in the potassium absorption, which is insensitive to the inhibitor of F0F1-ATPase N,N'-dicyclohexylcarbodiimide. It is assumed that, along with the KtrI system, which interacts with F0F1-ATPase, a separate or another K+ absorption system operates in these bacteria under particular conditions, which is dependent on NAD(+)+NADH. Presumably, these interact with this system, changing its conformational state required for the transition to the "active" form.  相似文献   

12.
K+- and ATP-dependent H+-accumulation in rat heavy gastric membrane vesicles enriched with (H+-K+)-ATPase was markedly stimulated by amphiphiles like lysophosphatidylcholine and Zwittergent 3-14 at concentrations of 10(-5) M. Their stimulatory effect was dependent on K+-concentration in the medium and was abolished by SCH 28,080, a specific inhibitor of (H+-K+)-ATPase. Lysophosphatidylcholine at the optimal dose (3 X 10(-5) M) showed dual effects on K+-dependent membrane functions; it stimulated the rate of K+-uptake by nearly 60%, but partially inhibited SCH 28,080-sensitive and K+-dependent ATP-hydrolysis (about 20% reduction). These data indicate that H+-pumping through (H+-K+)-ATPase in the inside-out gastric membrane vesicles was facilitated by the stimulatory effect of lysophosphatidylcholine on membrane K+-transport in spite of its partial inhibition of ATP-hydrolysis. It appears that the rate limiting step for operation of the ATPase is the availability of K+ ions in the luminal side of the pump. We propose that ionic amphiphiles may modulate K+-transport in rat heavy gastric membranes through specific interactions with the putative K+-transporter.  相似文献   

13.
Grampositive bacteria S. faecalis are capable of uptaking potassium ions during many hours in the media containing glucose. Such behaviour of K+-uptake indicates that this system is not regulated as it takes place in gramnegative bacteria E. coli (1,3). The stoichimetry of DCCD-sensitive exchange between H+ and K+ ions equals 2:1. It is possible that S. faecalis possesses an electrogenic proton-potassium pump which can exchange 2H+ from the cell for external K+.  相似文献   

14.
The regulation of internal Na(+) and K(+) concentrations is important for bacterial cells, which, in the absence of Na(+) extrusion systems, cannot grow in the presence of high external Na(+). Likewise, bacteria require K(+) uptake systems when the external K(+) concentration becomes too low to support growth. At present, we have little knowledge of K(+) toxicity and bacterial outward-directed K(+) transport systems. We report here that high external concentrations of K(+) at alkaline pH are toxic and that bacteria require K(+) efflux and/or extrusion systems to avoid excessive K(+) accumulation. We have identified the first example of a bacterial K(+)(specific)/H(+) antiporter, Vp-NhaP2, from Vibrio parahaemolyticus. This protein, a member of the cation : proton antiporter-1 (CPA1) family, was able to mediate K(+) extrusion from the cell to provide tolerance to high concentrations of external KCl at alkaline pH. We also report the discovery of two V. parahaemolyticus Na(+)/H(+) antiporters, Vp-NhaA and Vp-NhaB, which also exhibit a novel ion specificity toward K(+), implying that they work as Na(+)(K(+))/H(+) exchangers. Furthermore, under specific conditions, Escherichia coli was able to mediate K(+) extrusion against a K(+) chemical gradient, indicating that E. coli also possesses an unidentified K(+) extrusion system(s).  相似文献   

15.
The effects of amino acids present in minimal essential medium were investigated on 86Rb+ -fluxes and on the membrane-potential dependent accumulation of the lipophilic cation [3H]tetraphenylphosphonium (TTP+) in logarithmically growing Friend erythroleukemia cells. The ouabain-sensitive 86Rb+ -uptake measured as well in complete growth medium as in Earle's balanced salt solution (EBSS) with amino acid composition present in growth medium, was 3 to 4-fold increased in comparison to the 86Rb+-uptake measured in pure EBSS only. The Na+,K+,2Cl- -cotransport measured as piretanide-sensitive 86Rb+-uptake was reduced in the presence of amino acids. Stimulation of the ouabain-sensitive 86Rb+ -uptake could be brought about by the addition of alanine alone or of the sodium ionophore monensin. In spite of the activation of the Na+,K+ -pump the membrane-potential dependent accumulation of [3H]TPP+ was about 40 per cent reduced in the presence of medium amino acids indicating a decreased membrane potential under these conditions. On the other hand, monensin which induces an electrically silent Na+ -influx via Na+/H+ -exchange was shown to hyperpolarize the membrane on the basis of [3H]TPP+-accumulation. These results suggest that the intensive uptake of neutral amino acids by Na+-cotransport in rapidly growing cells may be responsible for both stimulation of the Na+,K+ -pump and decrease in the transmembrane potential.  相似文献   

16.
Lacan D  Durand M 《Plant physiology》1996,110(2):705-711
We investigated the mechanism of Na+ reabsorption in exchange for K+ at the xylem/symplast boundary of soybean roots (Glycine max var Hodgson). The xylem vessels of excised roots were perfused with solutions of defined composition to discriminate between entry of ions into or reabsorption from the xylem vessels. In the presence of NaCl, the transport systems released K+ into the xylem sap and reabsorbed Na+. The Na+-K+ exchange was energized by proton-translocating ATPases, enhanced by external K+ concentration, and dependent on the anion permeability. Evidence was presented for the operation of H+/Na+ and H+/K+ antiporters at the xylem/symplast interface.  相似文献   

17.
18.
The effects of external Na+ on the activity of the Na+-pump are complex. The first-order rate constant for Na+-efflux is reduced in the presence of very low external Na+ concentrations, and this inhibition is reversed when the Na+ level is raised. The same pattern has been observed for Na+-ATPase activity; however, it is not apparent from the current reaction mechanisms at which site (or sites) external Na+ binds to cause inhibition. In this paper, the effect of external Na+ on Na+-pump activity was studied by simulation, using a model similar to the Post-Albers scheme. Curves similar to those experimentally observed were obtained assuming that: (i) after phosphorylation, three Na+ ions are translocated and consecutively released to the external medium with decreasing dissociation constants; (ii) external Na+, with low affinity, binds to the K+o (external) sites stimulating dephosphorylation. These assumptions also permit one to explain the experimental observation that external Na+ (with both high and low affinities) competes with K+, inhibiting the K+ influx due to the Na+-pump, and the kinetically similar behavior of Na+-ATPase and ATP/ADP exchange reactions at low variable Na+ concentrations. The experimental evidence available that supports the present hypothesis is discussed.  相似文献   

19.
Resting rat light gastric membranes prepared through 2H2O and Percoll gradient centrifugations were enriched not only with (H+-K+)-ATPase and K+ transport activity (Im, W. B., Blakeman, D. P., and Davis, J. P. (1985) J. Biol. Chem. 260, 9452-9460), but also with a K+-independent, ATP-dependent H+-pumping activity. This intravesicular acidification has been ascribed to an oligomycin-insensitive H+-ATPase which differed from (H+-K+)-ATPase in several respects. The H+-ATPase is electrogenic, apparently of lower capacity, required a lower optimal ATP concentration (4 microM for the H+-ATPase and 500 microM for (H+-K+)-ATPase), of lower sensitivity to vanadate and sulfhydryl agents such as p-chloromercuribenzoate and N-ethylmaleimide, and insensitive to SCH 28,080, a known competitive inhibitor of (H+-K+)-ATPase with respect to K+. Operation of the H+-ATPase, however, appeared to interfere with the K+ transport activity in the light gastric membranes, probably through development of intravesicular positive membrane potential; for example, micromolar levels of Mg2+-ATP fully inhibited K+ uptake and stimulated K+ efflux as measured with 86Rb+. Involvement of (H+-K+)-ATPase in the K+ transport is not likely, since the inhibitory effect of Mg2+-ATP continued even after removal of the nucleotide with an ATP-scavenging system. Moreover, nigericin, an electroneutral H+/K+ exchanger, could bypass the inhibitory effect of Mg2+-ATP and equilibrate the membrane vesicles with 86Rb+ while valinomycin, an electrogenic K+ ionophore, could not. Finally, the H+-ATPase could possibly be involved in the acid secretory process, since its H+-pumping activity was removed from the light gastric membrane fraction upon carbachol treatment, along with the K+ transport and (H+-K+)-ATPase activities. We have speculated that the H+-ATPase is responsible for maintaining the K+-permeable intracellular membrane vesicles acidic and K+ free during the resting state of acid secretion and may contribute to basal acid secretion.  相似文献   

20.
The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of delta pH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, delta psi. Maximal rate of K+ efflux is observed at 180-190 mV, whereas K+ efflux is inhibited below 140-150 mV. (2) Activation of H+-K+ exchange leads to depression of delta pH but not of delta psi. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the delta psi control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial 'uncoupling' from the delta psi control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high delta psi. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号