首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new role for IQ motif proteins in regulating calmodulin function   总被引:3,自引:0,他引:3  
IQ motifs are found in diverse families of calmodulin (CaM)-binding proteins. Some of these, like PEP-19 and RC3, are highly abundant in neuronal tissues, but being devoid of catalytic activity, their biological roles are not understood. We hypothesized that these IQ motif proteins might have unique effects on the Ca2+ binding properties of CaM, since they bind to CaM in the presence or absence of Ca2+. Here we show that PEP-19 accelerates by 40 to 50-fold both the slow association and dissociation of Ca2+ from the C-domain of free CaM, and we identify the sites of interaction between CaM and PEP-19 using NMR. Importantly, we demonstrate that PEP-19 can also increase the rate of dissociation of Ca2+ from CaM when bound to intact CaM-dependent protein kinase II. Thus, PEP-19, and presumably similar members of the IQ family of proteins, has the potential to alter the Ca2+-binding dynamics of free CaM and CaM that is bound to other target proteins. Since Ca2+ binding to the C-domain of CaM is the rate-limiting step for activation of CaM-dependent enzymes, the data reveal a new concept of importance in understanding the temporal dynamics of Ca2+-dependent cell signaling.  相似文献   

2.
Ca2+ has been proposed to regulate Na+ channels through the action of calmodulin (CaM) bound to an IQ motif or through direct binding to a paired EF hand motif in the Nav1 C terminus. Mutations within these sites cause cardiac arrhythmias or autism, but details about how Ca2+ confers sensitivity are poorly understood. Studies on the homologous Cav1.2 channel revealed non-canonical CaM interactions, providing a framework for exploring Na+ channels. In contrast to previous reports, we found that Ca2+ does not bind directly to Na+ channel C termini. Rather, Ca2+ sensitivity appears to be mediated by CaM bound to the C termini in a manner that differs significantly from CaM regulation of Cav1.2. In Nav1.2 or Nav1.5, CaM bound to a localized region containing the IQ motif and did not support the large Ca(2+)-dependent conformational change seen in the Cav1.2.CaM complex. Furthermore, CaM binding to Nav1 C termini lowered Ca2+ binding affinity and cooperativity among the CaM-binding sites compared with CaM alone. Nonetheless, we found suggestive evidence for Ca2+/CaM-dependent effects upon Nav1 channels. The R1902C autism mutation conferred a Ca(2+)-dependent conformational change in Nav1.2 C terminus.CaM complex that was absent in the wild-type complex. In Nav1.5, CaM modulates the Cterminal interaction with the III-IV linker, which has been suggested as necessary to stabilize the inactivation gate, to minimize sustained channel activity during depolarization, and to prevent cardiac arrhythmias that lead to sudden death. Together, these data offer new biochemical evidence for Ca2+/CaM modulation of Na+ channel function.  相似文献   

3.
Peterson BZ  DeMaria CD  Adelman JP  Yue DT 《Neuron》1999,22(3):549-558
Elevated intracellular Ca2+ triggers inactivation of L-type calcium channels, providing negative Ca2+ feedback in many cells. Ca2+ binding to the main alpha1c channel subunit has been widely proposed to initiate such Ca2+ -dependent inactivation. Here, we find that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2+ -dependent inactivation in a "dominant-negative" manner. This result demonstrates that CaM is the actual Ca2+ sensor for inactivation and suggests that CaM is constitutively tethered to the channel complex. Inactivation is likely to occur via Ca2+ -dependent interaction of tethered CaM with an IQ-like motif on the carboxyl tail of alpha1c. CaM also binds to analogous IQ regions of N-, P/Q-, and R-type calcium channels, suggesting that CaM-mediated effects may be widespread in the calcium channel family.  相似文献   

4.
Black DJ  Selfridge JE  Persechini A 《Biochemistry》2007,46(46):13415-13424
We have performed a kinetic analysis of Ca2+-dependent switching in the complex between calmodulin (CaM) and the IQ domain from neuromodulin, and have developed detailed kinetic models for this process. Our results indicate that the affinity of the C-ter Ca2+-binding sites in bound CaM is reduced due to a approximately 10-fold decrease in the Ca2+ association rate, while the affinity of the N-ter Ca2+-binding sites is increased due to a approximately 3-fold decrease in the Ca2+ dissociation rate. Although the Ca2+-free and Ca2+-saturated forms of the CaM-IQ domain complex have identical affinities, CaM dissociates approximately 100 times faster in the presence of Ca2+. Furthermore, under these conditions CaM can be transferred to the CaM-binding domain from CaM kinase II via a ternary complex. These properties are consistent with the hypothesis that CaM bound to neuromodulin comprises a localized store that can be efficiently delivered to neuronal proteins in its Ca2+-bound form in response to a Ca2+ signal.  相似文献   

5.
Calmodulin (CaM) is the primary calcium sensor in eukaryotes. Calcium binds cooperatively to pairs of EF-hand motifs in each domain (N and C). This allows CaM to regulate cellular processes via calcium-dependent interactions with a variety of proteins, including ion channels. One neuronal target is NaV1.2, voltage-dependent sodium channel type II, to which CaM binds via an IQ motif within the NaV1.2 C-terminal tail (residues 1901-1938) [Mori, M., et al. (2000) Biochemistry 39, 1316-1323]. Here we report on the use of circular dichroism, fluorescein emission, and fluorescence anisotropy to study the interaction between CaM and NaV1.2 at varying calcium concentrations. At 1 mM MgCl2, both full-length CaM (CaM1-148) and a C-domain fragment (CaM76-148) exhibit tight (nanomolar) calcium-independent binding to the NaV1.2 IQ motif, whereas an N-domain fragment of CaM (CaM1-80) binds weakly, regardless of calcium concentration. Equilibrium calcium titrations of CaM at several concentrations of the NaV1.2 IQ peptide showed that the peptide reduced the calcium affinity of the CaM C-domain sites (III and IV) without affecting the N-domain sites (I and II) significantly. This leads us to propose that the CaM C-domain mediates constitutive binding to the NaV1.2 peptide, but that interaction then distorts calcium-binding sites III and IV, thereby reducing their affinity for calcium. This contrasts with the CaM-binding domains of voltage-dependent Ca2+ channels, kinases, and phosphatases, which increase the calcium binding affinity of the C-domain of CaM.  相似文献   

6.
果蝇的视觉信号转导途径是已知的最快的G 蛋白偶联信号通路。这其中涉及到TRP/TRPL通道的开放以及钙离子的内流等一系列反应的形成。NINAC(neither inactivation nor afterpotential C)是一种特异性存在于果蝇感光细胞中的第3类肌球蛋白(Myosin III),其在终止果蝇的视觉信号转导通路中起着非常重要的作用。NINAC蛋白具有两种亚型:一种是132 kD的蛋白亚型 (p132),另一种则是174 kD的蛋白亚型(p174)。这两种不同的蛋白亚型都具有相同的激酶催化结构域(kinase domain),以及与肌球蛋白相似的马达结构域(motor domain)。但是,它们在C末端却存在着非常大的差异,这其中包括了钙调蛋白结合基序(IQ motif)。NINAC的这两种蛋白亚型在果蝇的感光细胞中的定位以及作用有很大不同,尤其是在与钙调蛋白的相互作用方面。钙调蛋白结合基序与钙调蛋白(CaM)之间的相互作用对于果蝇的视觉信号通路具有重要的意义:NINAC结合钙调蛋白能力的缺失将导致果蝇的视觉传导缺陷。本文通过蛋白共表达的方法,成功表达并纯化得到了不同版本的NINAC与钙调蛋白的蛋白复合物。静态光散射的结果表明,在Ca2+存在情况下,p174蛋白可以结合2个Ca2+-CaM,而p132只结合1个Ca2+-CaM。通过分析型凝胶过滤以及等温量热滴定技术,进一步鉴定了p174及p132的IQ2(第2个钙调蛋白结合基序)序列与Ca2+ CaM的相互作用。通过序列分析及进一步的突变实验发现,p174 IQ2中的3个疏水氨基酸(F1083,F1086 和 L1092)对于钙调蛋白的结合非常重要,并导致了p174与p132蛋白和Ca2+ CaM结合能力的差异。本文的研究提供了NINAC与Ca2+-CaM相互作用的生化机制,将为进一步在果蝇视觉信号通路中深入研究CaM是如何调节NINAC的体内功能实验打下基础。  相似文献   

7.
L-type Ca(2+) channels are unusual in displaying two opposing forms of autoregulatory feedback, Ca(2+)-dependent inactivation and facilitation. Previous studies suggest that both involve direct interactions between calmodulin (CaM) and a consensus CaM-binding sequence (IQ motif) in the C terminus of the channel's alpha(1C) subunit. Here we report the functional effects of an extensive series of modifications of the IQ motif aimed at dissecting the structural determinants of the different forms of modulation. Although the combined substitution by alanine at five key positions (Ile(1624), Gln(1625), Phe(1628), Arg(1629), and Lys(1630)) abolished all Ca(2+) dependence, corresponding single alanine replacements behaved similarly to the wild-type channel (77wt) in four of five cases. The mutant I1624A stood out in displaying little or no Ca(2+)-dependent inactivation, but clear Ca(2+)- and frequency-dependent facilitation. An even more pronounced tilt in favor of facilitation was seen with the double mutant I1624A/Q1625A: overt facilitation was observed even during a single depolarizing pulse, as confirmed by two-pulse experiments. Replacement of Ile(1624) by 13 other amino acids produced graded and distinct patterns of change in the two forms of modulation. The extent of Ca(2+)-dependent facilitation was monotonically correlated with the affinity of CaM for the mutant IQ motif, determined in peptide binding experiments in vitro. Ca(2+)-dependent inactivation also depended on strong CaM binding to the IQ motif, but showed an additional requirement for a bulky, hydrophobic side chain at position 1624. Abolition of Ca(2+)-dependent modulation by IQ motif modifications mimicked and occluded the effects of overexpressing a dominant-negative CaM mutant.  相似文献   

8.
The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca(2+) binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca(2+) binding to sites III and IV, and we present a model showing that this could increase Ca(2+) binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39-62), and an adjacent acidic cluster of amino acids (amino acids 28-40). A synthetic peptide spanning residues 28-62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca(2+) association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca(2+) binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca(2+) binding to the C-domain of CaM.  相似文献   

9.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

10.
Calmodulin (CaM) functions as a Ca2+ sensor for inactivation and, in some cases, facilitation of a variety of voltage-dependent Ca2+ channels. A crucial determinant for CaM binding to these channels is the IQ motif in the COOH-terminal tail of the channel-forming subunit. The binding of CaM to IQ peptides from Lc-, P/Q-, and R-type, but not N-type, voltage-dependent Ca2+ channels increases the Ca2+ affinity of both lobes of CaM, producing similar N- and C-lobe Ca2+ affinities. Ca2+ associates with and dissociates from the N-lobe much more rapidly than the C-lobe when CaM is bound to the IQ peptides. Compared with the other IQ peptides, CaM-bound Lc-IQ has the highest Ca2+ affinity and the most rapid rates of Ca2+ association at both lobes, which is likely to make Ca2+ binding to CaM, bound to this channel, less sensitive than other channels to intracellular Ca2+ buffers. These kinetic differences in Ca2+ binding to the lobes of CaM when bound to the different IQ motifs may explain both the ability of CaM to perform multiple functions in these channels and the differences in CaM regulation of the different voltage-dependent Ca2+ channels. Ca2+-dependent inactivation; Ca2+-dependent facilitation; apocalmodulin  相似文献   

11.
Each heavy chain of dimeric chick brain myosin V (BMV) has a neck domain consisting of six IQ motifs with different amino acid sequences. The six IQ motifs form binding sites for five calmodulin (CaM) molecules and one essential light chain (either 17 or 23 kDa). When the calcium concentration is high, a small fraction of the 10 total CaM molecules dissociates from one molecule of BMV, resulting in loss of actin-based motor activity. At low Ca2+ concentrations, two molecules of exogenous CaM associate with one molecule of CaM-released BMV. This suggests that there is a single specific IQ motif responsible for the calcium-induced dissociation of CaM. In this study, we identify the specific IQ motif to be IQ2, the second IQ motif when counted from the N-terminal end of the neck domain. In addition, we showed that the essential light chains do not reside on IQ1 and IQ2. These findings were derived from proteolysis of BMV at high Ca2+ concentrations specifically at the neck region and SDS-PAGE analyses of the digests.  相似文献   

12.
We show here that in a yeast two-hybrid assay calmodulin (CaM) interacts with the intracellular C-terminal region of several members of the KCNQ family of potassium channels. CaM co-immunoprecipitates with KCNQ2, KCNQ3, or KCNQ5 subunits better in the absence than in the presence of Ca2+. Moreover, in two-hybrid assays where it is possible to detect interactions with apo-CaM but not with Ca2+-bound calmodulin, we localized the CaM-binding site to a region that is predicted to contain two alpha-helices (A and B). These two helices encompass approximately 85 amino acids, and in KCNQ2 they are separated by a dispensable stretch of approximately 130 amino acids. Within this CaM-binding domain, we found an IQ-like CaM-binding motif in helix A and two overlapping consensus 1-5-10 CaM-binding motifs in helix B. Point mutations in helix A or B were capable of abolishing CaM binding in the two-hybrid assay. Moreover, glutathione S-transferase fusion proteins containing helices A and B were capable of binding to CaM, indicating that the interaction with KCNQ channels is direct. Full-length CaM (both N and C lobes) and a functional EF-1 hand were required for these interactions to occur. These observations suggest that apo-CaM is bound to neuronal KCNQ channels at low resting Ca2+ levels and that this interaction is disturbed when the [Ca2+] is raised. Thus, we propose that CaM acts as a mediator in the Ca2+-dependent modulation of KCNQ channels.  相似文献   

13.
Kim J  Ghosh S  Nunziato DA  Pitt GS 《Neuron》2004,41(5):745-754
Ca(2+)-dependent inactivation (CDI) of L-type voltage-gated Ca(2+) channels limits Ca(2+) entry into neurons, thereby regulating numerous cellular events. Here we present the isolation and purification of the Ca(2+)-sensor complex, consisting of calmodulin (CaM) and part of the channel's pore-forming alpha(1C) subunit, and demonstrate the Ca(2+)-dependent conformational shift that underlies inactivation. Dominant-negative CaM mutants that prevent CDI block the sensor's Ca(2+)-dependent conformational change. We show how Ile1654 in the CaM binding IQ motif of alpha(1C) forms the link between the Ca(2+) sensor and the downstream inactivation machinery, using the alpha(1C) EF hand motif as a signal transducer to activate the putative pore-occluder, the alpha(1C) I-II intracellular linker.  相似文献   

14.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.  相似文献   

15.
To identify protein targets for calmodulin (CaM) in the cilia of Paramecium tetraurelia, we employed a 125I-CaM blot assay after resolution of ciliary proteins on SDS/polyacrylamide gels. Two distinct types of CaM-binding proteins were detected. One group bound 125I-CaM at free Ca2+ concentrations above 0.5-1 microM and included a major binding activity of 63 kDa (C63) and activities of 126 kDa (C126), 96 kDa (C96), and 36 kDa (C36). CaM bound these proteins with high (nanomolar) affinity and specificity relative to related Ca2+ receptors. The second type of protein bound 125I-CaM only when the free Ca2+ concentration was below 1-2 microM and included polypeptides of 95 kDa (E95) and 105 kDa (E105). E105 may also contain Ca2+-dependent binding sites for CaM. Both E95 and E105 exhibited strong specificity for Paramecium CaM over bovine CaM. Ciliary subfractionation experiments suggested that C63, C126, C96, E95, and E105 are bound to the axoneme, whereas C36 is a soluble and/or membrane-associated protein. Additional Ca2+-dependent CaM-binding proteins of 63, 70, and 120 kDa were found associated with ciliary membrane vesicles. In support of these results, filtration binding assays also indicated high-affinity binding sites for CaM on isolated intact axonemes and suggested the presence of both Ca2+-dependent and Ca2+-inhibitable targets. Like E95 and E105, the Ca2+-inhibitable CaM-binding sites showed strong preference for Paramecium CaM over vertebrate CaM and troponin C. Together, these results suggest that CaM has multiple targets in the cilium and hence may regulate ciliary motility in a complex and pleiotropic fashion.  相似文献   

16.
Ca(2+)-dependent inactivation (CDI) of L-type Ca(2+) channels plays a critical role in controlling Ca(2+) entry and downstream signal transduction in excitable cells. Ca(2+)-insensitive forms of calmodulin (CaM) act as dominant negatives to prevent CDI, suggesting that CaM acts as a resident Ca(2+) sensor. However, it is not known how the Ca(2+) sensor is constitutively tethered. We have found that the tethering of Ca(2+)-insensitive CaM was localized to the C-terminal tail of alpha(1C), close to the CDI effector motif, and that it depended on nanomolar Ca(2+) concentrations, likely attained in quiescent cells. Two stretches of amino acids were found to support the tethering and to contain putative CaM-binding sequences close to or overlapping residues previously shown to affect CDI and Ca(2+)-independent inactivation. Synthetic peptides containing these sequences displayed differences in CaM-binding properties, both in affinity and Ca(2+) dependence, leading us to propose a novel mechanism for CDI. In contrast to a traditional disinhibitory scenario, we suggest that apoCaM is tethered at two sites and signals actively to slow inactivation. When the C-terminal lobe of CaM binds to the nearby CaM effector sequence (IQ motif), the braking effect is relieved, and CDI is accelerated.  相似文献   

17.
The natural inhibitor proteins IF1 regulate mitochondrial F0F1 ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF1, two bovine IF1 synthetic peptides, as well as two homologous proteins from yeast, namely IF1 and STF1. Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF1 interaction is Ca2+-dependent. Bovine and yeast IF1 have intermediate binding affinity for CaM, while the Kd (dissociation constant) of the STF1-CaM interaction is slightly higher. Binding studies of CaM with bovine IF1 synthetic peptides allowed us to identify bovine IF1 sequence 33-42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF1 and STF1 sequences. In addition, the same region in bovine IF1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF1 but not in STF1. Based on the pH and Ca2+ dependence of IF1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF1 trafficking or additional IF1 roles not yet clarified.  相似文献   

18.
Erickson MG  Liang H  Mori MX  Yue DT 《Neuron》2003,39(1):97-107
L-type Ca(2+) channels possess a Ca(2+)-dependent inactivation (CDI) mechanism, affording feedback in diverse neurobiological settings and serving as prototype for unconventional calmodulin (CaM) regulation emerging in many Ca(2+) channels. Crucial to such regulation is the preassociation of Ca(2+)-free CaM (apoCaM) to channels, facilitating rapid triggering of CDI as Ca(2+)/CaM shifts to a channel IQ site (IQ). Progress has been hindered by controversy over the preassociation site, as identified by in vitro assays. Most critical has been the failure to resolve a functional signature of preassociation. Here, we deploy novel FRET assays in live cells to identify a 73 aa channel segment, containing IQ, as the critical preassociation pocket. IQ mutations disrupting preassociation revealed accelerated voltage-dependent inactivation (VDI) as the functional hallmark of channels lacking preassociated CaM. Hence, the alpha(1C) IQ segment is multifunctional-serving as ligand for preassociation and as Ca(2+)/CaM effector site for CDI.  相似文献   

19.
钙不依赖性钙调素结合蛋白的研究进展   总被引:4,自引:0,他引:4  
钙调素是普遍存在于真核生物细胞中、发挥多种生物学调控作用的信号组分.钙调素不仅在有Ca2 情况下通过与钙依赖性钙调素结合蛋白作用而传递信号,也能在相对无Ca2 条件下直接结合钙不依赖性钙调素结合蛋白而传递信号.综述了无钙离子结合钙调素及钙不依赖性钙调素结合蛋白的结构特性、钙不依赖性钙调素结合蛋白的种类及其可能的生物学作用,这将有助于我们深入认识钙调素介导信号途径的特异性、复杂性和多样性.  相似文献   

20.
Changes in activity-dependent calcium flux through voltage-gated calcium channels (Ca(V)s) drive two self-regulatory calcium-dependent feedback processes that require interaction between Ca(2+)/calmodulin (Ca(2+)/CaM) and a Ca(V) channel consensus isoleucine-glutamine (IQ) motif: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Here, we report the high-resolution structure of the Ca(2+)/CaM-Ca(V)1.2 IQ domain complex. The IQ domain engages hydrophobic pockets in the N-terminal and C-terminal Ca(2+)/CaM lobes through sets of conserved 'aromatic anchors.' Ca(2+)/N lobe adopts two conformations that suggest inherent conformational plasticity at the Ca(2+)/N lobe-IQ domain interface. Titration calorimetry experiments reveal competition between the lobes for IQ domain sites. Electrophysiological examination of Ca(2+)/N lobe aromatic anchors uncovers their role in Ca(V)1.2 CDF. Together, our data suggest that Ca(V) subtype differences in CDI and CDF are tuned by changes in IQ domain anchoring positions and establish a framework for understanding CaM lobe-specific regulation of Ca(V)s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号