首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bladder cancer (BC) is one of the most frequent urological malignancies, and its molecular mechanism still remains unclear. Recent studies have revealed that MicroRNA (miRNAs) acted as oncogenes or tumor suppressors in a variety of cancers. MiRNA‐96 has been reported to play a significant role in the development and progression of many cancers. In the current study, we found that transforming growth factor (TGF)‐β1 played a significant role in the progression that miR‐96 conducted. And TGF‐β1 could also regulate the expression of FOXQ1, which is the target gene of miR‐96. Furthermore, miR‐96 induced epithelial‐mesenchymal transition in BC cells, which is driven by TGF‐β1. In conclusion, our data revealed that miR‐96 regulates the progression and epithelial‐mesenchymal transition, which is driven by TGF‐β1 in BC cells; it may provide a new thought for the therapy of BC.  相似文献   

2.
3.
4.
Protein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up‐regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis. Silencing PRMT5 induces epithelial marker E‐cadherin expression and down‐regulates expression of mesenchymal markers including Vimentin, collagen I and β‐catenin in PaTu8988 and SW1990 cells, whereas ectopic PRMT5 re‐expression partially reverses these changes, indicating that PRMT5 promotes EMT in pancreatic cancer. More importantly, we find that PRMT5 knockdown decreases the phosphorylation level of EGFR at Y1068 and Y1172 and its downstream p‐AKT and p‐GSK3β, and then results in down‐regulation of β‐catenin. Expectedly, ectopic PRMT5 re‐expression also reverses the above changes. It is suggested that PRMT5 promotes EMT probably via EGFR/AKT/β‐catenin pathway. Taken together, our study demonstrates that PRMT5 plays oncogenic roles in the growth of pancreatic cancer cell and provides a potential candidate for pancreatic cancer treatment.  相似文献   

5.
6.
As a potential antitumor herbal medicine, plantamajoside (PMS) benefits the treatment of many human malignances. However, the role of PMS in the progression of hepatocellular carcinoma (HCC) and the related molecular mechanisms is still unknown. Here, we proved that the cell viabilities of HepG2 cells were gradually decreased with the increasing concentrations of CoCl2 and/or PMS via cell counting kit‐8 assay. Meanwhile, 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) and western blot assays were used to further confirm that PMS inhibited the CoCl2‐induced cell proliferation in HepG2 cells via suppressing the Ki67 and proliferating cell nuclear antigen expressions. We also performed wound‐healing and transwell assays and demonstrated that PMS inhibited CoCl2‐induced migration and invasion in HepG2 cells via suppressing the epithelial–mesenchymal transition (EMT) process. In addition, the use of 3‐(5′‐hydroxymethyl‐2′‐furyl)‐1‐benzylindazole further proved that PMS inhibited the malignant biological behaviors of HepG2 cells under hypoxic condition by suppressing the hypoxia‐inducible factor‐1α (HIF‐1α) expression. Besides, we further confirmed that PMS suppressed the growth and metastasis of implanted tumors in vivo. Given that PMS suppressed the proliferation and EMT induced by CoCl2 in HCC cells via downregulating HIF‐1α signaling pathway, we provided evidence that PMS might be a novel anti‐cancer drug for HCC treatment.  相似文献   

7.
8.
Simulated enzymic debranching of a β-limit dextrin model, prepared from a computed construct made by random extension and branching, and given the CCL value of w-maize amylopectin (and equal amounts of external chains with ECL values of 2 and 3) has been related to experimental chromatograms of the debranched β-limit dextrin of the amylopectin. The profile was similar to those from gel chromatograms and IEC-PAD chromatography.The equivalent lengths in glucosyl units of grid-links (g-links) of internal and external chains in constructs were calculated from the ICL and ECL values of amylopectin and models produced from the constructs with the appropriate lengths for internal and external chains. These derived models were subjected to simulated hydrolysis by Pseudomonas stutzeri amylase and the products compared with those of the experimental distribution from w-maize amylopectin. With the model the amounts of maltotetraose and maltodextrins released were similar to the experimental values but the distribution of branched maltodextrins was quite different. Unlike w-maize amylopectin – a polymer with the cluster structure – which has given a profile of molecular sizes of maltodextrins with low amounts of single and small numbers of internal chains and with a peak at a MW of about 14,000 (13 chains), in the model the proportion of maltodextrin with one internal chain was high and as d.p. increased the amounts decreased exponentially. This would be expected if the distribution of internal chains in the core was random. It is suggested that in the core of a model prepared from a construct made with alternating probabilities of extension – one in which this probability is high relative to branching, and a second in which it is low – may give clusters of branched maltodextrins with short internal chains which are joined by longer chains; more closely approximating the distribution of internal chains of different lengths in amylopectin.An arrangement for amylopectin molecules in the starch granule has been proposed. In this, they have a wafer-like, discoidal shape, composed of the amorphous zone overlain with the double helical, crystalline region. The flat macromolecules are concentrically layered with the former on the inside and the latter oriented to the outside of the granule.  相似文献   

9.
CXCR4 belongs to the family of G protein-coupled receptors and mediates the various developmental and regulatory effects of the chemokine SDF-1alpha. In addition, CXCR4 acts as a co-receptor along with CD4 for the HIV-1 viral glycoprotein gp120. Recently, there has also been a small molecule described that antagonizes both SDF-1 and gp120 binding to CXCR4. The structural and mechanistic basis for this dual recognition ability of CXCR4 is unknown largely due to the technical challenges of biochemically producing the components of the various complexes. We expressed the human CXCR4 receptor using a modified baculovirus expression vector that facilitates a single step antibody affinity purification of CXCR4 to >80% purity from Hi5 cells. The recombinant receptor undergoes N-linked glycosylation, tyrosine sulfation and is recognized by the 12G5 conformation specific antibody against human CXCR4. We are able to purify CXCR4 alone as well as complexed with its endogenous ligand SDF-1, its viral ligand gp120, and a small molecule antagonist AMD3100 by ion-exchange chromatography. We anticipate that the expression and purification scheme described in this paper will facilitate structure-function studies aimed at elucidating the molecular basis for CXCR4 recognition of its endogenous chemokine and viral ligands.  相似文献   

10.
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis.  相似文献   

11.
The integrin α4β1 is involved in mediating exfiltration of leukocytes from the vasculature. It interacts with a number of proteins up-regulated during the inflammatory response including VCAM-1 and the CS-1 alternatively spliced region of fibronectin. In addition it binds the multifunctional protein osteopontin (OPN), which can act as both a cytokine and an extracellular matrix molecule. Here we map the region of human OPN that supports cell adhesion via α4β1 using GST fusion proteins. We show that α4β1 expressed in J6 cells interacts with intact OPN when the integrin is in a high activation state, and by deletion mapping that the α4β1 binding region in OPN lies between amino acid residues 125 and 168 (aa125–168). This region contains the central RGD motif of OPN, which also interacts with integrins αvβ3, αvβ5, αvβ1, α8β1, and α5β1. Mutating the RGD motif to RAD had no effect on the interaction with α4β1. To define the binding site the region incorporating aa125–168 was divided into 5 overlapping peptides expressed as GST fusion proteins. Two peptides supported adhesion via α4β1, aa132–146, and aa153–168; of these only a synthetic peptide, SVVYGLR (aa162–168), derived from aa153–168 was able to inhibit α4β1 binding to CS-1. These data identify the motif SVVYGLR as a novel peptide inhibitor of α4β1, and the primary α4β1 binding site within OPN.  相似文献   

12.
13.
We previously revealed that epithelial‐to‐mesenchymal transition (EMT) was mediated by ΔNp63β, a splicing variant of ΔNp63, in oral squamous cell carcinoma (OSCC). Recent studies have highlighted the involvement of microRNA (miRNA) in EMT of cancer cells, though the mechanism remains unclear. To identify miRNAs responsible for ΔNp63β‐mediated EMT, miRNA microarray analyses were performed by ΔNp63β‐overexpression in OSCC cells; SQUU‐B, which lacks ΔNp63 expression and displays EMT phenotypes. miRNAs microarray analyses revealed miR‐205 was the most up‐regulated following ΔNp63β‐overexpression. In OSCC cells, miR‐205 expression was positively associated with ΔNp63 and negatively with zinc‐finger E‐box binding homeobox (ZEB) 1 and ZEB2, potential targets of miR‐205. miR‐205 overexpression by miR‐205 mimic transfection into SQUU‐B cells led to decreasing ZEB1, ZEB2, and mesenchymal markers, increasing epithelial markers, and reducing cell motilities, suggesting inhibition of EMT phenotype. Interestingly, the results opposite to this phenomenon were obtained by transfection of miR‐205 inhibitor into OSCC cells, which express ΔNp63 and miR‐205. Furthermore, target protector analyses revealed direct regulation by miR‐205 of ZEB1 and ZEB2 expression. These results showed tumor‐suppressive roles of ΔNp63β and miR‐205 by inhibiting EMT thorough modulating ZEB1 and ZEB2 expression in OSCC.  相似文献   

14.
15.
This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial–mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF‐β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected and assigned to blank, negative control (NC), TGF‐β, thrombospondin‐1 (TSP‐1), TGF‐β1+ TSP‐1, GP73‐siRNA‐1, GP73‐siRNA‐2, GP73‐siRNA‐1+ TSP‐1, GP73‐siRNA‐1+ pcDNA‐GP73, WT1‐siRNA and WT1‐siRNA + GP73‐siRNA‐1 groups. Expressions of GP73, TGF‐β1, Smad2, p‐Smad2, E‐cadherin and vimentin were detected using RT‐qPCR and Western blotting. Cell proliferation, migration and invasion were determined using MTT assay, scratch testing and Transwell assay, respectively. Compared with the blank and NC groups, levels of GP73, TGF‐β1, Smad2, p‐Smad2, N‐cadherin and vimentin decreased, and levels of WT1 and E‐cadherin increased in the GP73‐siRNA‐1 and GP73‐siRNA‐2 groups, while the opposite results were observed in the WT1 siRNA, TGF‐β, TSP‐1 and TGF‐β + TSP‐1 groups. Cell proliferation, migration and invasion notably decreased in the GP73‐siRNA‐1 and GP73‐siRNA‐2 groups in comparison with the blank and NC groups, while in the WT1 siRNA, TGF‐β, TSP‐1 and TGF‐β + TSP‐1 groups, cell migration, invasion and proliferation showed the reduction after the EMT. These results suggest that GP73 promotes bladder cancer invasion and metastasis by inducing the EMT through down‐regulating WT1 levels and activating the TGF‐β1/Smad2 signalling pathway.  相似文献   

16.
17.
18.
Epithelial‐mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti‐fibrotic property in bleomycin (BLM)‐induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM‐induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM‐induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM‐induced EMT. Intriguing, transforming growth factor‐β1 (TGF‐β1) was found to be up‐regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF‐β1 and activated FOXO3a in lung tissues. TGF‐β1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF‐β1‐activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down‐regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF‐β1‐induced EMT. Moreover, ASV treatment, similar with the TGF‐β1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF‐β1/PI3K/Akt‐induced FOXO3a hyperphosphorylation and down‐regulation to reverse EMT during the progression of fibrosis.  相似文献   

19.
20.
Recent studies have showed that α5 nicotinic acetylcholine receptor (α5‐nAChR) is closely associated with nicotine‐related lung cancer. Our previous studies also demonstrated that α5‐nAChR mediates nicotine‐induced lung carcinogenesis. However, the mechanism by which α5‐nAChR functions in lung carcinogenesis remains to be elucidated. Jab1/Csn5 is a key regulatory factor in smoking‐induced lung cancer. In this study, we explored the underlying mechanisms linking the α5‐nAChR‐Jab1/Csn5 axis with lung cancer epithelial‐mesenchymal transition (EMT) and metastasis, which may provide potential therapeutic targets for future lung cancer treatments. Our results demonstrated that the expression of α5‐nAChR was correlated with the expression of Jab1/Csn5 in lung cancer tissues and lung cancer cells. α5‐nAChR expression is associated with Jab1/Csn5 expression in lung tumour xenografts in mice. In vitro, the expression of α5‐nAChR mediated Stat3 and Jab1/Csn5 expression, significantly regulating the expression of the EMT markers, N‐cadherin and Vimentin. In addition, the down‐regulation of α5‐nAChR or/and Stat3 reduced Jab1/Csn5 expression, while the silencing of α5‐nAChR or Jab1/Csn5 inhibited the migration and invasion of NSCLC cells. Mechanistically, α5‐nAChR contributes to EMT and metastasis by regulating Stat3‐Jab1/Csn5 signalling in NSCLC, suggesting that α5‐nAChR may be a potential target in NSCLC diagnosis and immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号