首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic relationships of members of the subfamily Poeciliinae (Cyprinodontiformes) are investigated to test alternate hypotheses of diversification resulting from the assembly of the Central America and the Caribbean from the Cretaceous period onwards. We use 4333 aligned base pairs of mitochondrial DNA and 1549 aligned base pairs of nuclear DNA from 55 samples representing 48 ingroup and seven outgroup species to test this hypothesis. Mitochondrial genes analyzed include those encoding the 12S and 16S ribosomal RNAs; transfer RNAs coding for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine and tyrosine; and complete cytochrome b and NADH dehydrogenase subunit I and II; nuclear gene analyzed included the third exon of the recombination activation gene 1 (RAG1). Analyses of combined mtDNA and nuclear DNA data sets result in a well-supported phylogenetic hypothesis. This hypothesis is in conflict with the classical taxonomic assignment of genera into tribes and phylogenetic hypotheses based on the taxonomy; however, the molecular hypothesis defines nine clades that are geographically restricted and consistent with the geological evolution of Central America and the Caribbean. Our analyses support multiple colonization events of Middle America followed by a mix of vicariance and dispersal events.  相似文献   

2.
Phylogenetic analyses of the leech family Macrobdellidae were accomplished with all nominal species in the family save one. A total of 17 specimens in nine ingroup species were analysed, along with four outgroup taxa. Twenty-two morphological characters based on jaw dentition, sexual anatomy, and external morphology failed to provide a resolution for many of the relationships in the family. DNA sequence data from nuclear 18S rDNA, nuclear 28S rDNA, mitochondrial 12S rDNA, and mitochondrial cytochrome c oxidase subunit I were examined separately and in combination with morphological characters. The resulting combined analysis strongly corroborated the placement of the genus Philobdella within the family Macrobdellidae and as sister to a monophyletic genus Macrobdella , the typical North American medicinal leeches. Furthermore, sequence divergences among these taxa confirmed the existence of two species, Philobdella gracilis and P. floridana , readily distinguishable on the basis of jaw dentition .  相似文献   

3.
We reconstructed phylogenetic relationships of the family Badidae using both mitochondrial and nuclear nucleotide sequence data to address badid systematics and to evaluate the role of vicariant speciation on their evolution and current distribution. Phy-logenetic hypotheses were derived from complete cytochrome b (1,140 base pairs) sequences of 33 individuals representing 13 badid species, and using three species of Nandidae as outgroups. Additionally, we sequenced the nuclear RAG1 (1,473 base pairs) and Tmo-4C4 (511 base pairs) genes from each of the badid species and one representative of the outgroup. Our molecular data provide the first phylogenetic hypothesis of badid intrarelationships. Analysis of the mitochondrial and nuclear nucleotide sequence data sets resulted in well-supported trees, indicating a basal split between the genera Dario and Badis, and further supporting the division of the genus Badis into five species groups as suggested by a previous taxonomic revision of the Badidae. Within the genus Badis, mitochondrial and nuclear phylogenies differed in the relative position of B. kyar. We also used our molecular phylogeny to test a vicariant speciation hypothesis derived from geological evidence of large-scale changes in drainage patterns in the Miocene affecting the Irrawaddy- and Tsangpo-Brahmaputra drainages, in the southeastern Himalaya. Within both genera, Badis and Dario, we observed a divergence into Irrawaddy- and Tsangpo-Brahmaputra clades. Using a cytb substitution rate of 8.2 x 10(-9) (substitutions x base pair(-1) x year(-1), we tentatively date this vicariant event at the Oligocene-Miocene boundary (19-24Myr). It is concordant with a hypothesized paleo connection of the Tsangpo river with the Irrawaddy drainage that was most likely interrupted during Miocene orogenic events through tectonic uplifts in eastern Tibet. Our data, therefore, indicate a substantial role of vicariant-based speciation shaping the current distribution patterns of badids.  相似文献   

4.
We estimated phylogenetic relationships among species of the bee genus Diadasia, a group of new world, specialist bees. We sequenced approximately 2 kb of the mitochondrial genes cytochrome oxidase subunit I and II and tRNA leucine and approximately 1 kb of the nuclear gene elongation factor 1-alpha for 24 North American Diadasia species, 4 South American species, and five outgroup genera. Parsimony analyses of the two data sets were highly congruent. A combined analysis produced a well-resolved phylogenetic hypothesis that supported the monophyly of Diadasia, but not that of traditional subgenera: Diadasia s. str. was paraphyletic in all analyses. With one exception, the North and South American species formed separate clades, supporting previous hypotheses that two lineages of Diadasia have dispersed from South to North America: a more recent dispersal of D. ochracea and an older dispersal of the ancestor to all other North American species. Different species of Diadasia specialize on pollen from at least five different plant families; the phylogeny presented here, along with known host affinities, indicates that host-switching has been rare.  相似文献   

5.
We sequenced 2167 base pairs (bp) of mitochondrial DNA cytochrome b and 16S, and 1390 bp of nuclear genes BRCA1 and ApoB in shrews taxa (Eulipotyphla, family Soricidae). The aim was to study the relationships at higher taxonomic levels within this family, and in particular the position of difficult clades such as Anourosorex and Myosorex. The data confirmed two monophyletic subfamilies, Soricinae and Crocidurinae. In the former, the tribes Anourosoricini, Blarinini, Nectogalini, Notiosoricini, and Soricini were supported. The latter was formed by the tribes Myosoricini and Crocidurini. The genus Suncus appeared to be paraphyletic and included Sylvisorex. We further suggest a biogeographical hypothesis, which shows that North America was colonized by three independent lineages of Soricinae during middle Miocene. Our hypothesis is congruent with the first fossil records for these taxa. Using molecular dating, the first exchanges between Africa and Eurasia occurred during the middle Miocene. The last one took place in the Late Miocene, with the dispersion of the genus Crocidura through the old world.  相似文献   

6.
Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes   总被引:10,自引:0,他引:10  
We present a most comprehensive phylogenetic analysis of the family Cichlidae. New data analyzed include mitochondrial 16S rRNA sequences and two nuclear loci (Tmo-M27 and Tmo-4C4) for a large taxonomic sampling with emphasis on South American species. We also incorporate a published morphological data set for a total evidence analysis. Character congruence among mitochondrial (74 taxa) and nuclear data (50 taxa) was high. However, partition-homogeneity tests suggest significant heterogeneity among molecular and morphological data. In agreement with results obtained from molecular data alone, total evidence analysis (1,460 characters for 34 taxa) supports a robust phylogenetic hypothesis for the family Cichlidae that is congruent with drift-vicariance events associated with the fragmentation of Gondwana. Our analyses confirm the placement of Malagasy/Indian cichlids as the most basal lineages, with a sister-group relationship to the monophyletic African and Neotropical clades. Total evidence suggests that the controversial African genus Heterochromis is at the base of the African radiation. Among more than 50 Neotropical genera analyzed, Retroculus is identified as the basal taxon, with successive branching of Cichla, Astronotus, geophagines (including crenicichlines) + chaetobranchines, and cichlasomines + heroines. Relative rate tests applied to mitochondrial DNA suggest significantly higher rates of genetic variation in Neotropical than in African taxa, and both mitochondrial and nuclear sequences show that rate heterogeneity among Neotropical lineages is confined to the geophagine cichlids.  相似文献   

7.
To set the stage for historical analyses of the ecology and behavior of tree swallows and their allies (genus Tachycineta), we reconstructed the phylogeny of the nine Tachycineta species by comparing DNA sequences of six mitochondrial genes: Cytochrome b (990 base pairs), the second subunit of nicotinamide adenine dinucleotide dehydrogenase (839 base pairs), cytochrome oxidase II (85 base pairs), ATPase 8 (158 base pairs), tRNA-lysine (73 base pairs), and tRNA-methionine (25 base pairs). The phylogeny consisted of two main clades: South and Central American species ((T. stolzmanni, T. albilinea, T. albiventris), (T. leucorrhoa, T. meyeni)), and North American and Caribbean species (T. bicolor, (T. thalassina, T. euchrysea, T. cyaneoviridis)). The genetic distances among the species suggested that Tachycineta is a relatively old group compared to other New World swallow genera. One interesting biogeographic discovery was the close relationship between Caribbean and western North American taxa. This historical connection occurs in other groups of swallows and swifts as well. To reconstruct the phylogeny, we employed Bayesian as well as traditional maximum-likelihood methods. The Bayesian approach provided probability values for trees produced from the different genes and gene combinations, as well as probabilities of branches within those trees. We compared Bayesian and maximum-likelihood bootstrap branch support and found that all branches with Bayesian probabilities > or = 95% received bootstrap support >70%.  相似文献   

8.
Three mitochondrial DNA (mtDNA) markers were used to infer the phylogenetic relationships of the morphologically diverse, species rich, and poorly understood western North American aquatic gastropod genus Pyrgulopsis (Hydrobiidae: Nymphophilinae). Sequences were obtained from 62 of 124 currently recognized species of Pyrgulopsis and representatives of four related genera of North American nymphophilines. Separate and combined analyses of the mtDNA datasets recovered a well supported clade composed of Pyrgulopsis and two other North American nymphophiline genera (Floridobia, Nymphophilus) consistent with the results of a prior study based on a single gene and with anatomical evidence suggesting that these taxa form a monophyletic group. Phylogenetic relationships among lineages of Pyrgulopsis were little resolved in our analyses and provided no obvious basis for splitting this large genus into multiple genera. The little differentiated Mexican genus Nymphophilus was consistently placed within Pyrgulopsis in our trees and is formally synonymized with it herein. Pyrgulopsis was also depicted as paraphyletic with respect to Floridobia in some of our trees while in others the latter was sister to a Nymphophilus + Pyrgulopsis clade. Based on these equivocal results and the morphological and geographical divergence of eastern North American Floridobia relative to Pyrgulopsis, we recommend that the former be maintained as a separate genus. The short, weakly supported branches within Pyrgulopsis and the noncongruence between our molecular phylogenetic hypotheses and geographical groupings of species are attributed to an early rapid diversification of the genus, perhaps triggered by the complex changes in western topography which occurred during the late Tertiary. Our results also indicate that penial morphologies used to define species groups of Pyrgulopsis have been subject to striking convergence throughout the West, suggesting another compelling facet of the radiation of these snails.  相似文献   

9.
Eryngium is the largest and arguably the most taxonomically complex genus in the family Apiaceae. Infrageneric relationships within Eryngium were inferred using sequence data from the chloroplast DNA trnQ-trnK 5'-exon and nuclear ribosomal DNA ITS regions to test previous hypotheses of subgeneric relationships, explain distribution patterns, reconstruct ancestral morphological features, and elucidate the evolutionary processes that gave rise to this speciose genus. In total, 157 accessions representing 118 species of Eryngium, 15 species of Sanicula (including the genus Hacquetia that was recently reduced to synonymy) and the monotypic Petagnaea were analyzed using maximum parsimony and Bayesian methods. Both separate and simultaneous analyses of plastid and nuclear data sets were carried out because of the prevalence of polyploids and hybrids within the genus. Eryngium is confirmed as monophyletic and is divided into two redefined subgenera: Eryngium subgenus Eryngium and E. subgenus Monocotyloidea. The first subgenus includes all examined species from the Old World (Africa, Europe, and Asia), except Eryngium tenue, E. viviparum, E. galioides, and E. corniculatum. Eryngium subgenus Monocotyloidea includes all examined species from the New World (North, Central and South America, and Australia; herein called the "New World sensu stricto" clade) plus the aforementioned Old World species that fall at the base of this clade. Most sectional and subgeneric divisions previously erected on the basis of morphology are not monophyletic. Within the "New World sensu stricto" group, six clades are well supported in analyses of plastid and combined plastid and nuclear data sets; the relationships among these clades, however, are unresolved. These clades are designated as "Mexican", "Eastern USA", "South American", "North American monocotyledonous", "South American monocotyledonous", and "Pacific". Members of each clade share similar geographical distributions and/or morphological or ecological traits. Evidence from branch lengths and low sequence divergence estimates suggests a rapid radiation at the base of each of these lineages. Conflict between chloroplast and nuclear data sets is weak, but the disagreements found are suggestive that hybrid speciation in Eryngium might have been a cause, but also a consequence, of the different rapid radiations observed. Dispersal-vicariance analysis indicates that Eryngium and its two subgenera originated from western Mediterranean ancestors and that the present-day distribution of the genus is explained by several dispersal events, including one trans-Atlantic dispersal. In general, these dispersals coincide with the polytomies observed, suggesting that they played key roles in the diversification of the genus. The evolution of Eryngium combines a history of long distance dispersals, rapid radiations, and hybridization, culminating in the taxonomic complexity observed today in the genus.  相似文献   

10.
The systematics of the species-rich genus of Sebastes rockfish has not been resolved, and is unlikely to be resolved using morphological criteria. Using an alternative approach based on DNA sequence variation, we sampled the genome for random, presumably neutral, nuclear DNA sequences, by sequencing microsatellite flanking regions of 15 Sebastes species (representing 15 of 22 extant subgenera) and Hozukius emblemarius. We aligned sequences of flanking regions of eight of the 13 loci that amplified, which presumably are homologous. In aggregate, the aligned sequences included 848 bp, 53 bp of which were polymorphic. The base changes among species included 27 transitions, 20 transversions, three multiple substitutions, and three deletions or insertions. The flanking regions at different loci had different base substitution rates. Nucleotide divergence among Sebastes species ranged from 0.0012 to 0.0216, whereas nucleotide divergence between Sebastes and Hozukius species ranged from 0.0095 to 0.0240. We used maximum parsimony, neighbor-joining, and maximum likelihood methods to examine relationships among the species. H. emblemariusformed a separate group, and five of the western Pacific Ocean species of rockfish clustered together, suggesting that they may have shared an evolutionary history distinct from many North American species. The flanking regions of some microsatellite loci contain DNA sequence variation that distinguishes rockfish species and may prove useful for clarifying relationships among rockfish, or other closely related species.  相似文献   

11.
We use fragments of three nuclear genes (Histone 3, 18SrDNA, and 28SrDNA) and three mitochondrial genes (16SrDNA, ND1, and COI) totalling approximately 4.5kb, in addition to morphological data, to estimate the phylogenetic relationships among Anelosimus spiders, well known for their sociality. The analysis includes 67 individuals representing 23 of the 53 currently recognized Anelosimus species and all species groups previously recognized by morphological evidence. We analyse the data using Bayesian, maximum likelihood, and parsimony methods, considering the genes individually as well as combined (mitochondrial, nuclear, and both combined) in addition to a 'total evidence' analysis including morphology. Most of the data partitions are congruent in agreeing on several fundamental aspects of the phylogeny, and the combined molecular data yield a tree broadly similar to an existing morphological hypothesis. We argue that such congruence among data partitions is an important indicator of support that may go undetected by standard robustness estimators. Our results strongly support Anelosimus monophyly, and the monophyly of the recently revised American 'eximius lineage', although slightly altered by excluding A. pacificus. There was consistent support for the scattering of American Anelosimus species in three clades suggesting intercontinental dispersal. Several recently described species are reconstructed as monophyletic, supporting taxonomic decisions based on morphology and behaviour in this taxonomically difficult group. Corroborating previous results from morphology, the molecular data suggest that social species are scattered across the genus and thus that sociality has evolved multiple times, a significant finding for exploring the causes and consequences of social evolution in this group of organisms.  相似文献   

12.
The genus Myotis includes the largest number of species in the family Vespertilionidae (Chiroptera), and its members are distributed throughout most of the world. To re-evaluate the phylogenetic position of East Asian Myotis species with respect to Myotis species worldwide, we analyzed mitochondrial gene sequences of NADH dehydrogenase subunit 1 and cytochrome b from 24 East Asian individuals as well as 42 vespertilionid bats determined previously. The results suggest that: (1) some individuals having the same species name in Europe and Japan do not form a monophyletic clade, indicating that some bat species exhibit morphological convergence, (2) Japanese Myotis mystacinus forms a sister relationship with Myotis brandtii (Palaearctic), and both species are included in the American clade implying that an ancestor of these species originated in North America, and (3) the Black whiskered bat, Myotis pruinosus, is endemic to Japan and forms sister relationships with Myotis yanbarensis and Myotis montivagus collected from Okinawa (Japan) and Selangor (Malaysia), respectively, implying that M. pruinosus originated from the south. The systematics of Japanese and East Asian Myotis bats were revisited by considering their phylogenetic relationships. Our study provides the first extensive phylogenetic hypothesis of the genus Myotis that includes East Asian and Japanese species.  相似文献   

13.
The Neotropical bolitoglossine salamanders represent an impressive adaptive radiation, comprising roughly 40% of global salamander species diversity. Despite decades of morphological studies and molecular work, a robust multilocus phylogenetic hypothesis based on DNA sequence data is lacking for the group. We estimated species trees based on multilocus nuclear and mitochondrial data for all major lineages within the bolitoglossines, and used our new phylogenetic hypothesis to test traditional biogeographical scenarios and hypotheses of morphological evolution in the group. In contrast to previous phylogenies, our results place all Central American endemic genera in a single clade and suggest that Central America played a critical role in the early biogeographical history of the group. The large, predominantly Mexican genus Pseudoeurycea is paraphyletic, and analyses of the nuclear data place two lineages of Pseudoeurycea as the sister group of Bolitoglossa. Our phylogeny reveals extensive homoplasy in morphological characters, which may be the result of truncation or alteration of a shared developmental trajectory. We used our phylogenetic results to revise the taxonomy of the genus Pseudoeurycea. © 2015 The Linnean Society of London  相似文献   

14.
We investigated the phylogenetic relationships of Pseudophoxinus (Cyprinidae: Leuciscinae) species from central Anatolia, Turkey to test the hypothesis of geographic speciation driven by early Pliocene orogenic events. We analyzed 1141 aligned base pairs of the complete cytochrome b mitochondrial gene. Phylogenetic relationships reconstructed by maximum likelihood, Bayesian likelihood, and maximum parsimony methods are identical, and generally well supported. Species and clades are restricted to geologically well-defined units, and are deeply divergent from each other. The basal diversification of central Anatolian Pseudophoxinus is estimated to have occurred approximately 15 million years ago. Our results are in agreement with a previous study of the Anatolian fish genus Aphanius that also shows a diversification pattern driven by the Pliocene orogenic events. The distribution of clades of Aphanius and Pseudophoxinus overlap, and areas of distribution comprise the same geological units. The geological history of Anatolia is likely to have had a major impact on the diversification history of many taxa occupying central Anatolia; many of these taxa are likely to be still unrecognized as distinct.  相似文献   

15.
The Tachycineta genus of swallows is comprised of nine species that range from Alaska to southern Chile. We sequenced the entire mitochondrial genome of each member of Tachycineta and generated a completely resolved phylogenetic hypothesis for the corresponding mitochondrial gene tree. Our analyses confirm the presence of two sub-clades within Tachycineta that are associated with geography: a North American/Caribbean clade and a South/Central American clade. We found considerable variation among regions of the mitochondrial genome in both substitution rates and the level of information that each region supplied for phylogenetic reconstruction. We found no evidence of positive directional selection within mitochondrial coding regions, but we identified numerous sites under purifying selection. This finding suggests that, despite differences in life history traits and distributions, mitochondrial genes in Tachycineta are predominantly under purifying selection for conserved function.  相似文献   

16.
Phylogenetic relationships within tube blennies (Chaenopsinae) were reconstructed using Bayesian, maximum parsimony and likelihood analyses of multiple molecular markers (mitochondrial DNA: COI; nuclear DNA: TMO-4C4, RAG1, Rhodopsin, and Histone H3) and 148 morphological characters. This total-evidence based topology is well-resolved and congruent across analytical methods with strong support for the monophyly of the Chaenopsinae, all included genera and several internal nodes. A rapid radiation in the early evolution of chaenopsins is inferred from the relatively poor support values for relationships among basal lineages and their divergence into different habitats (rocky reefs, coral reefs and the reef/sand interface). Rates of molecular evolution in chaenopsins, as inferred by divergence among four putative transisthmian geminate species pairs, are rapid compared to other fishes. Conflicts among genetic markers and morphology are especially evident within the genus Coralliozetus, with different species relationships supported by morphology, TMO-4C4, and RAG1 plus Rhodopsin. This study hypothesizes a novel sistergroup relationship between Ekemblemaria and Hemiemblemaria, consistent with morphological, molecular and habitat use data. Our total evidence phylogenetic hypothesis indicates that previously hypothesized morphological characters supporting a close relationship between Hemiemblemaria and Chaenopsis plus Lucayablennius resulted from convergent evolution in these relatively free-swimming blennies.  相似文献   

17.
The evolution of migration in birds has fascinated biologists for centuries. In this study, we performed phylogenetic-based analyses of Catharus thrushes, a model genus in the study of avian migration, and their close relatives. For these analyses, we used both mitochondrial and nuclear genes, and the resulting phylogenies were used to trace migratory traits and biogeographic patterns. Our results provide the first robust assessment of relationships within Catharus and relatives and indicate that both mitochondrial and autosomal genes contribute to overall support of the phylogeny. Measures of phylogenetic informativeness indicated that mitochondrial genes provided more signal within Catharus than did nuclear genes, whereas nuclear loci provided more signal for relationships between Catharus and close relatives than did mitochondrial genes. Insertion and deletion events also contributed important support across the phylogeny. Across all taxa included in the study, and for Catharus, possession of long-distance migration is reconstructed as the ancestral condition, and a North American (north of Mexico) ancestral area is inferred. Within Catharus, sedentary behaviour evolved after the first speciation event in the genus and is geographically and temporally correlated with Central American distributions and the final closure of the Central American Seaway. Migratory behaviour subsequently evolved twice in Catharus and is geographically and temporally correlated with a recolonization of North America in the late Pleistocene. By temporally linking speciation events with changes in migratory condition and events in Earth history, we are able to show support for several competing hypotheses relating to the geographic origin of migration.  相似文献   

18.
Despite the considerable research that has focused on the evolutionary relationships and biogeography of the genus Bufo, an evolutionary synthesis of the entire group has not yet emerged. In the present study, almost 4 kb of DNA sequence data from mitochondrial (12S, tRNAVal, and 16S) and nuclear (POMC; Rag-1) genes, and 83 characters from morphology were analysed to infer a phylogeny of South American toads. Phylogenies were reconstructed with parsimony and maximum likelihood and Bayesian model-based methods. The results of the analysis of morphological data support the hypothesis that within Bufo , some skull characters (e.g. frontoparietal width), correlated with the amount of cranial ossification, are prone to homoplasy. Unique and unreversed morphological synapomorphies are presented that can be used to diagnose recognized species groups of South American toads. The results of all phylogenetic analyses support the monophyly of most species groups of South American Bufo . In most DNA-only and combined analyses, the South American (minus the B. guttatus and part of the ' B. spinulosus ' groups), North American, Central American, and African lineages form generally well-supported clades: ((((((((South America) (North America + Central America)) Eurasia) Africa) Eurasia) South America) West Indies) South America). This result confirms and extends prior studies recovering South American Bufo as polyphyletic. The biogeographical results indicate that: (1) The origin of Bufo predates the fragmentation of Gondwana; (2) Central and North American species compose the sister group to a large, 'derived' clade of South American Bufo ; and (3) Eurasian species form the sister group to the New World clade.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 407–452.  相似文献   

19.
The genus Brachycybe Wood is a little known group of millipedes comprising eight nominal species distributed throughout North America, Japan, South Korea, Taiwan, and China. The group's species are relatively morphologically homogenous and have been described primarily on the basis of differences in somatic morphology largely ignoring the often-used characters in millipede taxonomy and systematics - male genitalia (the gonopods). The objectives of this study were to survey male gonopods with the aim of evaluating inter-specific variation, assess existing species boundaries and phylogeny using molecular characters, examine the historical biogeography of the genus, and estimate the timing of lineage divergence using a molecular clock. We surveyed two mitochondrial genes (cytochrome c oxidase I and cytochrome b) and one nuclear protein-coding gene (glutamyl and prolyl-tRNA synthetase) each comprising 952, 746, and 555 aligned base pairs respectively. Phylogenetic inference coupled with an analysis of species delimitation using a generalized mixed Yule coalescent model recovered eight species, two of which were considered to be cryptic. Molecular dating analyses coupled with ancestral range reconstructions indicate that the group is quite ancient (age>50 million years) and its origins are likely traced back geographically to the mountains of California's Sierra Nevada and Coastal Ranges. The genus Brachycybe appears to have expanded its range at least twice out of present day California into eastern North America and at least once into Asia. This study highlights the need for integrative approaches to describe biodiversity and furthers the evidence for cryptic diversity even in groups where genitalia are generally thought to be rapidly evolving, diagnostic features.  相似文献   

20.
Phylogenetic relationships of a subset of Aphanius fish comprising central Anatolia, Turkey, are investigated to test the hypothesis of geographic speciation driven by early Pliocene orogenic events in spite of morphological similarity. We use 3434 aligned base pairs of mitochondrial DNA from 42 samples representing 36 populations of three species and six outgroup species to test this hypothesis. Genes analyzed include those encoding the 12S and 16S ribosomal RNAs; transfer RNAs coding for valine, leucine, isoleucine, glutamine, methionine, tryptophan, alanine, asparagine, cysteine, and tyrosine; and complete NADH dehydrogenase subunits I and II. Distance based minimum evolution and maximum-likelihood analyses identify six well-supported clades consisting of Aphanius danfordii, Aphanius sp. aff danfordii, and four clades of Aphanius anatoliae. Parsimony analysis results in 462 equally parsimonious trees, all of which contain the six well supported clades identified in the other analyses. Our phylogenetic results are supported by hybridization studies (Villwock, 1964), and by the geological history of Anatolia. Phylogenetic relationships among the six clades are only weakly supported, however, and differ among analytical methods. We therefore test and subsequently reject the hypothesis of simultaneous diversification among the six central Anatolian clades. However, our analyses do not identify any internodes that are significantly better supported than expected by chance alone. Therefore, although bifurcating branching order is hypothesized to underlie this radiation, the exact branching order is difficult to estimate with confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号