首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent genomic analyses of the two sequenced strains F. nucleatum subsp. nucleatum ATCC 25586 and F. nucleatum subsp. vincentii ATCC 49256 suggested that the major protein secretion systems were absent. However, such a paucity of protein secretion systems is incongruous with F. nucleatum pathogenesis. Moreover, the presence of one or more such systems has been described for every other Gram-negative organism sequenced to date. In this investigation, the question of protein secretion in F. nucleatum was revisited. In the current study, the absence in F. nucleatum of a twin-arginine translocation system (TC #2.A.64.), a Type III secretion system (TC #3.A.6.), a Type IV secretion system (TC #3.A.7.) and a chaperone/usher pathway (TC #1.B.11.) was confirmed. However, contrary to previous findings, our investigations indicated that a Type I protein secretion system was also absent from F. nucleatum. In contrast, members of the holin family (TC #1.E) and the machinery required for a Type 4 piliation/fimbriation system (TC #3.A.15.2.) were identified using a variety of bioinformatic tools. Furthermore, a complete range of proteins resembling members of the Type V secretion pathway, i.e., the Type Va (autotransporter; TC #1.B.12.), Type Vb (two-partner secretion system; TC #1.B.20.) and Type Vc (YadA-like trimeric autotransporter; TC #1.B.42.), was found. This work provides new insight into the protein secretion and virulence mechanisms of F. nucleatum.  相似文献   

2.
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.  相似文献   

3.
Consistent information about protein secretion in Gram-positive bacteria is essentially restricted to the model organism Bacillus subtilis. Among genome-sequenced clostridia, Clostridium acetobutylicum has been the most extensively studied from a physiological point of view and is the organism for which the largest variety of molecular biology tools have been developed. Following in silico analyses, both secreted proteins and protein secretion systems were identified. The Tat (Twin arginine translocation; TC #2.A.64) pathway and ABC (ATP binding cassette) protein exporters (TC #3.A.1.) could not be identified, but the Sec (secretion) pathway (TC #3.A.5) appears to be used prevalently. Similarly, a flagella export apparatus (FEA; TC #3.A.6.), holins (TC #1.E.), and an ESAT-6/WXG100 (early secreted antigen target of 6 kDa/proteins with a WXG motif of approximately 100 residues) secretion system were identified. Here, we report for the first time the identification of a fimbrilin protein exporter (FPE; TC #3.A.14) and a Tad (tight adherence) export apparatus in C. acetobutylicum. This investigation highlights the potential use of this saprophytic bacterium in biotechnological and biomedical applications as well as a model organism for studying protein secretion in pathogenic Gram-positive bacteria.  相似文献   

4.
Aeromonas salmonicida subsp. salmonicida possesses a number of potential virulence factors, including a recently identified plasmid-encoded Type III secretion system. A number of field isolates of A. salmonicida subsp. salmonicida were examined for the presence of Type III secretion genes. Using in vitro experiments, it was found that field isolates containing such genes are cytotoxic to fish cell lines, whereas those that lack these genes are not. Using a rainbow trout in vivo model, the virulence of a wild type A. salmonicida subsp. salmonicida strain (Strain JF2267), which possesses Type III secretion genes, was compared to that of a laboratory derivative of the same strain that has lost these genes. While Strain JF2267 was virulent towards rainbow trout, its derivative was not. The A. salmonicida subsp. salmonicida Type Strain ATCC 33658T, which also lacks Type III secretion genes, was also found to be avirulent by this challenge model. The findings from both the in vitro and in vivo experiments suggest that the presence of Type III secretion genes is associated with the virulence of this important fish pathogen.  相似文献   

5.
The objective of this study was to assess the strain-specificity of a DNA probe, Fu12, for Fusobacterium nucleatum subsp. nucleatum ATCC 25586T (F. nucleatum ATCC 25586T), and to develop sets of strain-specific polymerase chain reaction (PCR) primers. Strain-specificity was tested against 16 strains of F. nucleatum and 3 strains of distinct Fusobacterium species. Southern blot hybridization revealed that the Fu12 reacted exclusively with the HindIII-digested genomic DNA of F. nucleatum ATCC 25586T. The results of PCR revealed that three pairs of PCR primers, based on the nucleotide sequence of Fu12, generated the strain-specific amplicons from F. nucleatum ATCC 25586T. These results suggest that the DNA probe Fu12 and the three pairs of PCR primers could be useful in the identification of F. nucleatum ATCC 25586T, especially with regard to the determination of the authenticity of the strain.  相似文献   

6.
7.
Fusobacterium nucleatum, one of the major causative bacteria of periodontitis, is classified into five subspecies (nucleatum, polymorphum, vincentii, animalis, and fusiforme) on the basis of the several phenotypic characteristics and DNA homology. This is the first report of the draft genome sequence of F. nucleatum subsp. fusiforme ATCC 51190(T).  相似文献   

8.
The major outer-membrane proteins of 40-41 kDa were identified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in Fusobacterium nucleatum strains ATCC 10953, ATCC 25586, F3, F6 and Fev1. The proteins were purified by preparative gel electrophoresis. Their behaviour in gel filtration and gel electrophoresis, their sensitivity to proteolytic enzymes, and their amino acid composition were investigated. The purified proteins were partly sequenced from the N-terminal end. A 36.5 kDa portion was protected against extrinsic proteolytic (trypsin, chymotrypsin or pronase) digestion of whole cells. This polypeptide was isolated and partially sequenced from the N-terminal end. From these data and data from extrinsic iodination it was concluded that the N-terminal end of the protein is probably exposed on the surface of the cell. A database search revealed amino acid sequence similarity in an Ala-Pro-rich region of outer-membrane protein A (OmpA) in other Gram-negative bacteria.  相似文献   

9.
Fusobacterium nucleatum is a Gram-negative anaerobe important in dental biofilm ecology and infectious diseases with significant societal impact. The lack of efficient genetic systems has hampered molecular analyses in this microorganism. We previously reported construction of a shuttle plasmid, pHS17, using the native fusobacterial plasmid pFN1 and an erythromycin resistance cassette. However, the host range of pHS17 was restricted to F. nucleatum, ATCC 10953, and the transformation efficiency was limited. This study was undertaken to improve genetic systems for molecular analysis in F. nucleatum. We identified a second F. nucleatum strain, ATCC 23726, which is transformed with improved efficiency compared to ATCC 10953. Two novel second generation pFN1-based shuttle plasmids, pHS23 and pHS30, were developed and enable transformation of ATCC 23726 at 6.2 x 10(4) and 1.5 x 10(6) transformants/mug plasmid DNA, respectively. The transformation efficiency of pHS30, which harbors a catP gene conferring resistance to chloramphenicol, was more than 1000-fold greater than that of pHS17. The improved transformation efficiency facilitated disruption of the chromosomal rnr gene using a suicide plasmid pHS19, the first demonstration of targeted mutagenesis in F. nucleatum. These results provide significant advances in the development of systems for molecular analysis in F. nucleatum.  相似文献   

10.
Three native plasmids of Fusobacterium nucleatum were characterized, including DNA sequence analysis of one plasmid, pFN1. A shuttle plasmid, pHS17, capable of transforming Escherichia coli and F. nucleatum ATCC 10953 was constructed with pFN1. pHS17 was stably maintained in the F. nucleatum transformants, and differences in the transformation efficiencies suggested the presence of a restriction-modification system in F. nucleatum.  相似文献   

11.
Fusobacterium nucleatum strains, isolated from man and animals, were shown to comprise four centres of variation within the species by using a variety of biochemical tests. DNA-DNA hybridization data indicated that they should differences between the groups to warrant their placement into four subspecies for which we propose the following: F. nucleatum subsp. nucleatum (commonly isolated from diseased sites), F. nucleatum subsp. polymorphum (from healthy sites, most frequently isolated), F. nucleatum subsp. fusiforme (from healthy sites, most frequently isolated), F. nucleatum subsp. fusiforme (from healthy sites, rarely isolated) and F. nucleatum subsp. animalis from the colon of animals.  相似文献   

12.
Using a variety of physiological, biochemical, and molecular systematic analyses, we have shown previously that there are four groups within the species Fusobacterium nucleatum. Two of these groups of strains correspond to the recently proposed taxa F. nucleatum subsp. nucleatum and F. nucleatum subsp. polymorphum. In this paper we show that the two remaining groups are distinct and formally propose that they should be recognized as F. nucleatum subsp. fusiforme (type strain, NCTC 11326) and F. nucleatum subsp. animalis (type strain, NCTC 12276). The tests which we used did not allow a full assessment of the status of F. nucleatum subsp. vincentii compared with F. nucleatum subsp. nucleatum.  相似文献   

13.
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.  相似文献   

14.
Fusobacterium nucleatum is a gram-negative anaerobe that is prevalent in periodontal disease and infections of different parts of the body. The organism has remarkable adherence properties, binding to partners ranging from eukaryotic and prokaryotic cells to extracellular macromolecules. Understanding its adherence is important for understanding the pathogenesis of F. nucleatum. In this study, a novel adhesin, FadA (Fusobacterium adhesin A), was demonstrated to bind to the surface proteins of the oral mucosal KB cells. FadA is composed of 129 amino acid (aa) residues, including an 18-aa signal peptide, with calculated molecular masses of 13.6 kDa for the intact form and 12.6 kDa for the secreted form. It is highly conserved among F. nucleatum, Fusobacterium periodonticum, and Fusobacterium simiae, the three most closely related oral species, but is absent in the nonoral species, including Fusobacterium gonidiaformans, Fusobacterium mortiferum, Fusobacterium naviforme, Fusobacterium russii, and Fusobacterium ulcerans. In addition to FadA, F. nucleatum ATCC 25586 and ATCC 49256 also encode two paralogues, FN1529 and FNV2159, each sharing 31% identity with FadA. A double-crossover fadA deletion mutant, F. nucleatum 12230-US1, was constructed by utilizing a novel sonoporation procedure. The mutant had a slightly slower growth rate, yet its binding to KB and Chinese hamster ovarian cells was reduced by 70 to 80% compared to that of the wild type, indicating that FadA plays an important role in fusobacterial colonization in the host. Furthermore, due to its uniqueness to oral Fusobacterium species, fadA may be used as a marker to detect orally related fusobacteria. F. nucleatum isolated from other parts of the body may originate from the oral cavity.  相似文献   

15.
The phylogenetic interrelationships of 14 members of the genus Fusobacterium were investigated by performing a comparative analysis of the 16S rRNA sequences of these organisms. The sequence data revealed considerable intrageneric heterogeneity. The four species Fusobacterium nucleatum (including F. nucleatum subsp. nucleatum, F. nucleatum subsp. polymorphum, "F. nucleatum subsp. fusiforme," and "F. nucleatum subsp. animalis"), Fusobacterium alocis, Fusobacterium periodonticum, and Fusobacterium simiae, which colonize oral cavities, exhibited high levels of sequence homology with each other and formed a distinct group within the genus. Fusobacterium mortiferum, Fusobacterium varium, and Fusobacterium ulcerans also formed a phylogenetically coherent group, as did the two species Fusobacterium gonidiaformans and Fusobacterium necrophorum. Fusobacterium russii and Fusobacterium necrogenes displayed no specific relationship with any of the other fusobacteria. The sequence data are discussed in the context of previous physiological and chemical findings.  相似文献   

16.
Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains.  相似文献   

17.
Six strains of Fusobacterium nucleatum were tested for their ability to react with [3H]diisopropylfluorophosphate (DFP), a serine protease inhibitor. Several cytoplasmic proteins were labelled but the strongest labelling was regularly observed in a few outer membrane proteins. The number and the molecular mass of the proteins detected varied according to the strain tested. A 61 kDa protein was labelled in all strains tested, including the two type strains ATCC 10953 and ATCC 25586. A 65 kDa protein was particularly strongly labelled in strains Fev1 and F6.  相似文献   

18.
Phylogenetic and antigenic studies were performed on 48 human oral Fusobacterium strains from Chinese patients with either necrotizing ulcerative gingivitis (NUG) or gingivitis and on 23 Fusobacterium nucleatum or Fusobacterium periodonticum strains from European periodontitis patients. Alignment of partial 16S rRNA gene sequences resulted in a phylogenetic tree that corresponded well with the current classification of oral fusobacteria into F. periodonticum and several subspecies of F. nucleatum, in spite of much minor genetic variability. F. periodonticum, F. nucleatum subsp. animalis and a previously undescribed phylogenetic cluster (C4), that may represent an additional F. nucleatum subspecies, constituted discrete clusters distinct from the remainder of F. nucleatum with high bootstrap values. Chinese and European strains differed markedly with regard to their respective classification patterns, suggesting a predominance of F. peridonticum and F. nucleatum susp. animalis over F. nucleatum subsp. nucleatum and F. nucleatum subsp. fusiforme/vincentii in samples from China. Antigenic typing enabled the association of many previously described serovars with distinct phylogenetic clusters and when applied directly to uncultured clinical samples confirmed the differential distribution of oral Fusobacterium taxa in Chinese and European samples. Bacteria from cluster C4 and F. nucleatum subsp. animalis were significantly more prevalent and accounted for higher cell numbers in NUG than in gingivitis samples, suggesting a possible association of these rarely observed taxa with NUG in Chinese patients.  相似文献   

19.
A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central 'bridging organisms' in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine-inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine-binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum . Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD ) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive 'early oral colonizers'. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation.  相似文献   

20.
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号