首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness-related traits. We show that widespread hybridization has occurred between two neo-tropical stream fishes with partial reproductive isolation. Phylogenetic analyses of mitochondrial sequence data showed that the swordtail fish Xiphophorus birchmanni is monophyletic and that X. malinche is part of an independent monophyletic clade with other species. Using informative single nucleotide polymorphisms in one mitochondrial and three nuclear intron loci, we genotyped 776 specimens collected from twenty-three sites along seven separate stream reaches. Hybrid zones occurred in replicated fashion in all stream reaches along a gradient from high to low elevation. Genotyping revealed substantial variation in parental and hybrid frequencies among localities. Tests of F(IS) and linkage disequilibrium (LD) revealed generally low F(IS) and LD except in five populations where both parental species and hybrids were found suggesting incomplete reproductive isolation. In these locations, heterozygote deficiency and LD were high, which suggests either selection against early generation hybrids or assortative mating. These data lay the foundation to study the adaptive basis of the replicated hybrid zone structure and for future integration of behaviour and genetics to determine the processes that lead to the population genetic patterns observed in these hybrid zones.  相似文献   

2.
Understanding the processes that shape patterns of genetic structure across space is a central aim of landscape genetics. However, it remains unclear how geographical features and environmental variables shape gene flow, particularly for marine species in large complex seascapes. Here, we evaluated the genomic composition of the two‐band anemonefish Amphiprion bicinctus across its entire geographical range in the Red Sea and Gulf of Aden, as well as its close relative, Amphiprion omanensis endemic to the southern coast of Oman. Both the Red Sea and the Arabian Sea are complex and environmentally heterogeneous marine systems that provide an ideal scenario to address these questions. Our findings confirm the presence of two genetic clusters previously reported for A. bicinctus in the Red Sea. Genetic structure analyses suggest a complex seascape configuration, with evidence of both isolation by distance (IBD) and isolation by environment (IBE). In addition to IBD and IBE, genetic structure among sites was best explained when two barriers to gene flow were also accounted for. One of these coincides with a strong oligotrophic–eutrophic gradient at around 16–20?N in the Red Sea. The other agrees with a historical bathymetric barrier at the straight of Bab al Mandab. Finally, these data support the presence of interspecific hybrids at an intermediate suture zone at Socotra and indicate complex patterns of genomic admixture in the Gulf of Aden with evidence of introgression between species. Our findings highlight the power of recent genomic approaches to resolve subtle patterns of gene flow in marine seascapes.  相似文献   

3.
4.
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.  相似文献   

5.
Latitudinal and elevational gradients both represent thermal gradients. Assessing the consistency of the relationships between phylogenetic structure and climate between latitudinal and elevational gradients can provide insight into the mechanisms driving assembly of species from regional pools into local assemblages. The aim of this study is to compare patterns of phylogenetic structure measures for angiosperm tree species between latitudinal and elevational gradients, using a dataset of angiosperm tree species in 14 092 forest plots in eastern North America. We assessed whether these two gradients produce similar relationships between climate and phylogenetic structure, hypothesizing that they should differ in magnitude but not direction. We used correlation and regression analyses to assess the relation of measures of phylogenetic structure to elevation, latitude and climatic variables, which included minimum temperature, temperature seasonality, annual precipitation and precipitation seasonality. We found that 1) phylogenetic relatedness of angiosperm trees increases with decreasing temperature along both latitudinal and elevational gradients but the relationship between phylogenetic relatedness and temperature is steeper for elevational gradients than for latitudinal gradients; 2) the tip-weighted metric of phylogenetic relatedness (nearest taxon index) is more strongly correlated with climatic variables than the basal-weighted metric of phylogenetic relatedness (net relatedness index); 3) winter cold temperature exerts a stronger effect on community assembly of angiosperm trees than does temperature seasonality. These results suggest that winter cold temperature, rather than temperature seasonality, drives phylogenetic structure of plants in local forest communities, and that species distributions along elevational gradients are more in equilibrium with temperature, compared with those along latitudinal gradients.  相似文献   

6.
The central–marginal hypothesis (CMH) predicts that population size, genetic diversity and genetic connectivity are highest at the core and decrease near the edges of species' geographic distributions. We provide a test of the CMH using three replicated core‐to‐edge transects that encompass nearly the entire geographic range of the endemic streamside salamander (Ambystoma barbouri). We confirmed that the mapped core of the distribution was the most suitable habitat using ecological niche modelling (ENM) and via genetic estimates of effective population sizes. As predicted by the CMH, we found statistical support for decreased genetic diversity, effective population size and genetic connectivity from core to edge in western and northern transects, yet not along a southern transect. Based on our niche model, habitat suitability is lower towards the southern range edge, presumably leading to conflicting core‐to‐edge genetic patterns. These results suggest that multiple processes may influence a species' distribution based on the heterogeneity of habitat across a species' range and that replicated sampling may be needed to accurately test the CMH. Our work also emphasizes the importance of identifying the geographic range core with methods other than using the Euclidean centre on a map, which may help to explain discrepancies among other empirical tests of the CMH. Assessing core‐to‐edge population genetic patterns across an entire species' range accompanied with ENM can inform our general understanding of the mechanisms leading to species' geographic range limits.  相似文献   

7.
In this study, we explore the interplay of population demography with the evolution of ecological niches during or after speciation in Hordeum. While large populations maintain a high level of standing genetic diversity, gene flow and recombination buffers against fast alterations in ecological adaptation. Small populations harbour lower allele diversity but can more easily shift to new niches if they initially survive under changed conditions. Thus, large populations should be more conservative regarding niche changes in comparison to small populations. We used environmental niche modelling together with phylogenetic, phylogeographic and population genetic analyses to infer the correlation of population demography with changes in ecological niche dimensions in 12 diploid Hordeum species from the New World, forming four monophyletic groups. Our analyses found both shifts and conservatism in distinct niche dimensions within and among clades. Speciation due to vicariance resulted in three species with no pronounced climate niche differences, while species originating due to long‐distance dispersals or otherwise encountering genetic bottlenecks mostly revealed climate niche shifts. Niche convergence among clades indicates a niche‐filling pattern during the last 2 million years in South American Hordeum. We provide evidence that species, which did not encounter population reductions mainly showed ecoclimatic niche conservatism, while major niche shifts occurred in species which have undergone population bottlenecks. Our data allow the conclusion that population demography influences adaptation and niche shifts or conservatism in South American Hordeum species.  相似文献   

8.
Psammochloa villosa is an ecologically important desert grass that occurs in the Inner Mongolian Plateau where it is frequently the dominant species and is involved in sand stabilization and wind breaking. We sought to generate a preliminary demographic framework for P. villosa to support the future studies of this species, its conservation, and sustainable utilization. To accomplish this, we characterized the genetic diversity and structure of 210 individuals from 43 natural populations of P. villosa using amplified fragment length polymorphism (AFLP) markers. We obtained 1,728 well‐defined amplified bands from eight pairs of primers, of which 1,654 bands (95.7%) were polymorphic. Results obtained from the AFLPs suggested effective alleles among populations of 1.32, a Nei''s standard genetic distance value of 0.206, a Shannon index of 0.332, a coefficient of gene differentiation (G ST) of 0.469, and a gene flow parameter (Nm) of 0.576. All these values indicate that there is abundant genetic diversity in P. villosa, but limited gene flow. An analysis of molecular variance (AMOVA) showed that genetic variation mainly exists within populations (64.2%), and we found that the most genetically similar populations were often not geographically adjacent. Thus, this suggests that the mechanisms of gene flow are surprisingly complex in this species and may occur over long distances. In addition, we predicted the distribution dynamics of P. villosa based on the spatial distribution modeling and found that its range has contracted continuously since the last interglacial period. We speculate that dry, cold climates have been critical in determining the geographic distribution of P. villosa during the Quaternary period. Our study provides new insights into the population genetics and evolutionary history of P. villosa in the Inner Mongolian Plateau and provides a resource that can be used to design in situ conservation actions and prioritize sustainable utilization.  相似文献   

9.
北京东灵山海拔梯度上辽东栎种群结构和空间分布   总被引:13,自引:0,他引:13  
张育新  马克明  祁建  冯云  张洁瑜 《生态学报》2009,29(6):2789-2796
种群年龄结构和空间分布格局是种群生态学的核心研究内容.为了阐明辽东栎种群海拔梯度分布特点,在北京东灵山地区辽东栎海拔分布范围(1000~1800m)内调查10条样带,研究种群大小级结构和空间分布的变异.种群的平均胸径在海拔梯度上表现出两段式的分布特征,海拔1480m为两段分布的分界点,在每一段内随海拔增加平均胸径也增加, 这反映了海拔梯度上种群的不同发育历史.种群密度、种群的聚集程度、种群的结构在海拔梯度上的分布特征都与平均胸径分布相似,种群密度和聚集程度与平均胸径为负相关系,其分布趋势与平均胸径相反.总体上,东灵山海拔梯度上辽东栎种群还是比较稳定的.辽东栎种群结构和空间分布在海拔梯度上的分布特征是种群发育历史、物种特性、环境、干扰等因素在海拔梯度上综合作用的结果.  相似文献   

10.
A surprisingly large number of species potentially threatened by human harvest lack quantitative ecological studies incorporating harvest effects, especially clonal species in the alpine Himalayas. We studied density and biomass variation of a threatened medicinal herb, Neopicrorhiza scrophulariiflora, to examine the effect of harvest on plant performance. The study covered two regions with contrasting harvest situations—one with open‐access and another protected from commercial harvesting. Four populations from each region were compared along an elevation gradient (3,800–4,800 m). Also, we conducted in situ interviews with 165 and 38 medicinal and aromatic plant users in open‐access and protected regions, respectively, to assess the collection and use patterns of the target species. The quantity harvested per household for traditional healthcare use was similar in both regions. We found no evidence of trade‐driven collection in the protected region but in the open‐access region a trade‐based annual collection of 35–465 kg dried rhizomes per household had a strong negative effect on both density and biomass. In the protected region, the effect of harvest intensity on plant density was positive for vegetative and negative for reproductive individuals, whereas in the open‐access region, the effect was negative for both vegetative and reproductive individuals. The results indicated that a low harvest intensity had no adverse impact on N. scrophulariiflora populations; however, quantification of the optimum level of harvest remains to be explored. Shrub vegetation appeared to buffer the harvest impact on plant density, possibly through the retention of additional moisture. To maintain population viability, we suggest regulating harvest, for example, by introducing rotational harvest systems, ensuring that a sufficient number of reproductive individuals are left as a source of propagules in each harvested population and that populations are given time to recover between harvests.  相似文献   

11.
Aims This study explores the patterns of niche differentiation in a group of seven closely related columbines (genus Aquilegia, Ranunculaceae) from the Iberian Peninsula. Populations of these columbines are subject to complex patterns of divergent selection across environments, which partly explain the taxonomic structure of the group. This suggests the hypothesis that niche divergence must have occurred along the process of diversification of the group.Methods We used MaxEnt to build environmental niche models of seven subspecies belonging to the three species of Aquilegia present in the Iberian Peninsula. From these models, we compared the environmental niches through two different approaches: ENMtools and multivariate methods.Important findings MaxEnt distributions conformed closely to the actual distribution of the study taxa. ENMtools methods failed to uncover any clear patterns of niche differentiation or conservatism in Iberian columbines. Multivariate analyses indicate the existence of differentiation along altitudinal gradients and along a gradient of climatic conditions determined by the summer precipitation and temperatures. However, climatic conditions related to winter temperature and precipitation, as well as soil properties, were equally likely to show conservatism or divergence. The complex patterns of niche evolution we found suggest that Iberian Columbines have not been significantly constrained by forces of niche conservatism, so they could respond adaptively to the fast and profound climate changes in the Iberian Peninsula through the glacial cycles of the Pleistocene.  相似文献   

12.
Carex section Ceratocystis (Cyperaceae) is a group of recently evolved plant species, in which hybridization is frequent, introgression is documented, taxonomy is complex, and morphological boundaries are vague. Within this section, a unified taxonomic treatment of the Carex jemtlandicaCarex lepidocarpa species complex does not exist, and Norway may currently be the sole country accepting species rank for both. Carex jemtlandica is mainly confined to Fennoscandia and is thus a Fennoscandian conservation responsibility. This motivated us to test the principal hypothesis that both C. jemtlandica and C. lepidocarpa represent evolutionary significant units, and that both deserve their current recognition at species level. We investigated their evolutionary distinctiveness in Norway,using restriction site-associated DNA sequencing and ecological niche modeling. Our genomic results reveal two genetic clusters, largely corresponding to C. jemtlandica and C. lepidocarpa that also remain distinct in sympatry, despite clear indications of ongoing hybridization and introgression. The ecological niche modeling suggests that they occupy different environmental niches. Jointly, our results clearly show that C. jemtlandica and C. lepidocarpa represent separately evolving entities that should qualify recognition as evolutionary significant units. Given the high level of introgression compared to other hybridizing species pairs in Carex we recommend treating C. jemtlandica as a subspecies of C. lepidocarpa.  相似文献   

13.
Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock‐forming ability.  相似文献   

14.
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders –Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee– from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non‐clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single‐nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex‐biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour‐pattern traits have moved across this hybrid zone.  相似文献   

15.
L A Lait  T M Burg 《Heredity》2013,111(4):321-329
The population genetic structure of northern boreal species has been strongly influenced both by the Quaternary glaciations and the presence of contemporary barriers, such as mountain ranges and rivers. We used a combination of mitochondrial DNA (mtDNA), nuclear microsatellites and spatial distribution modelling to study the population genetic structure of the boreal chickadee (Poecile hudsonicus), a resident passerine, and to investigate whether historical or contemporary barriers have influenced this northern species. MtDNA data showed evidence of eastern and western groups, with secondary admixture occurring in central Canada. This suggests that the boreal chickadee probably persisted in multiple glacial refugia, one in Beringia and at least one in the east. Palaeo-distribution modelling identified suitable habitat in Beringia (Alaska), Atlantic Canada and the southern United States, and correspond to divergence dates of 60–96 kya. Pairwise FST values for both mtDNA and microsatellites were significant for all comparisons involving Newfoundland, though mtDNA data suggest a more recent separation. Furthermore, unlike mtDNA data, nuclear data support population connectivity among the continental populations, possibly due to male-biased dispersal. Although both are significant, the isolation-by-distance signal is much stronger for mtDNA (r2=0.51) than for microsatellites (r2=0.05), supporting the hypothesis of male-biased dispersal. The population structure of the boreal chickadee was influenced by isolation in multiple refugia and contemporary barriers. In addition to geographical distance, physical barriers such as the Strait of Belle Isle and northern mountains in Alaska are restricting gene flow, whereas the Rocky Mountains in the west are a porous barrier.  相似文献   

16.
Populations of the common mussel ( Mytilus edulis ) from the North Sea area (Skakerrak-Kattegat) and those from the Baltic Sea are almost diagnostically differentiated at five out of 22 studied allozyme loci; at a further seven loci, alleles predominant or common in one area are nearly absent in the other. Genetic distance was estimated at 0.28; this is similar to the distances of these populations to the Mediterranean mussel M. galloprovincialis. The three mussel types obviously represent equal evolutionary divergence from one another, and should also be taxonomically equally separated; a semispecies rank within a more comprehensive M. edulis complex or superspecies is suggested. The age of the Baltic mussel type ( 'M. trossulus' ), as an independent evolutionary lineage, is probably far greater than that of the post-glacial Baltic Sea.
Allele frequencies change gradually and in parallel when entering from the Kattegat through the Sound into the Baltic. Only a slight Wahlund effect at the strongly diverged Gpi and Pgm loci was found in intermediate populations, indicating that extensive hybridization of the two taxa takes place in the area. However, strong interlocus genotypic associations suggest that selection against hybrids is intense in later generations; the c. 100 km wide hybrid zone is narrow relative to the dispersal distance. The genotypic structure of the Lap locus does not conform with those of the other loci studied in the hybrid zone; it cannot be viewed merely as a neutral marker of the process of hybridization.  相似文献   

17.
The role of environment and the relative significance of endogenous versus exogenous selection in shaping hybrid zones have been crucial issues in the studies of hybridization. Recent advances in ecological niche modeling (ENM) offer new methodological tools, especially in combination with the genotyping of individuals in the hybrid zone. Here, we study the hybrid zone between the widely known spices Origanum onites and Origanum vulgare ssp. hirtum in Crete. We analyze the genetic structure of both parental taxa and their hybrid Origanum × intercendens using AFLP markers on 15 sympatric and 12 allopatric populations and employ ecological niche modeling and niche similarity tests to study their niche patterns. We complement these analyses with seed viability measurements. Our study revealed that the hybridizing taxa O. onites and O. vulgare ssp. hirtum and the resulting genotypic classes showed geographical and environmental niche similarities based on the predictions of ENMs and the subsequent similarity tests. The occurrence of the hybrid zone is not directly dependent on environmental factors which favor the fitness of the hybrid compared to the parental taxa, but rather on aspects such as historical factors and management practices, which may contribute to the localization and maintenance of the contact zone between parental species. Our results suggest that if a minimum required niche differentiation between genotypic classes is not achieved, environmental dependence might not have a prominent role on the outcome of the hybridization.  相似文献   

18.
19.
20.
The family Profundulidae is a group of small-sized fish species distributed between southern Mexico and Honduras, where they are frequently the only fish representatives at higher elevations in the basins where they occur. We characterized their ecological niche using different methods and metrics drawn from niche modelling and by re-examining phylogenetic relationships of a recently published molecular phylogeny of this family to gain a better understanding of its biogeographic and evolutionary history. We assessed both lines of evidence from the perspective of niche conservatism to set a foundation for discussing hypotheses about the processes underlying the distribution and evolution of the group. In fish clades where the species composition is not clear, we examined whether niche classification could be informative to discriminate groups geographically and ecologically consistent with any of the different hypotheses of valid species. The characterization of the ecological niche was carried out using the Maxent algorithm under different parameterizations and the projection of the presence on the main components of the most relevant environmental coverage, and the niche comparison was calculated with two indices (D and I), both in environmental space and in that projected geographically. With the molecular data, a species tree was generated using the *BEAST method. The comparison of these data was calculated with an age-overlap correlation test. Based on the molecular phylogeny and on niche overlap analyses, we uncovered strong evidence to support the idea that ecologically similar species are not necessarily sister species. The correlation analysis for genetic distance and niche overlap was not significant (P > 0.05). In clades with taxonomic conflicts, we only identified Profundulus oaxacae as a geographically and ecologically distinct group from P. punctatus. All the evidence considered leads us to propose that Profundulidae do not show evidence of niche conservatism and that there are reasons to consider P. oaxacae as a valid species. Our study suggests that niche divergence is a driving evolutionary force that caused the diversification and speciation processes of the Profundulidae, along with the geological and climatic events that promoted the expansion or contraction of suitable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号