首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a detailed analysis of the picosecond-to-nanosecond motions of green fluorescent protein (GFP) and its hydration water using neutron scattering spectroscopy and hydrogen/deuterium contrast. The analysis reveals that hydration water suppresses protein motions at lower temperatures (<∼200 K), and facilitates protein dynamics at high temperatures. Experimental data demonstrate that the hydration water is harmonic at temperatures <∼180–190 K and is not affected by the proteins’ methyl group rotations. The dynamics of the hydration water exhibits changes at ∼180–190 K that we ascribe to the glass transition in the hydrated protein. Our results confirm significant differences in the dynamics of protein and its hydration water at high temperatures: on the picosecond-to-nanosecond timescale, the hydration water exhibits diffusive dynamics, while the protein motions are localized to <∼3 Å. The diffusion of the GFP hydration water is similar to the behavior of hydration water previously observed for other proteins. Comparison with other globular proteins (e.g., lysozyme) reveals that on the timescale of 1 ns and at equivalent hydration level, GFP dynamics (mean-square displacements and quasielastic intensity) are of much smaller amplitude. Moreover, the suppression of the protein dynamics by the hydration water at low temperatures appears to be stronger in GFP than in other globular proteins. We ascribe this observation to the barrellike structure of GFP.  相似文献   

2.
《Biophysical journal》2021,120(23):5408-5420
β-casein undergoes a reversible endothermic self-association, forming protein micelles of limited size. In its functional state, a single β-casein monomer is unfolded, which creates a high structural flexibility, which is supposed to play a major role in preventing the precipitation of calcium phosphate particles. We characterize the structural flexibility in terms of nanosecond molecular motions, depending on the temperature by quasielastic neutron scattering. Our major questions are: Does the self-association reduce the chain flexibility? How does the dynamic spectrum of disordered caseins differ from a compactly globular protein? How does the dynamic spectrum of β-casein in solution differ from that of a protein in hydrated powder states? We report on two relaxation processes on a nanosecond and a sub-nanosecond timescale for β-casein in solution. Both processes are analyzed by Brownian oscillator model, by which the spring constant can be defined in the isotropic parabolic potential. The slower process, which is analyzed by neutron spin echo, seems a characteristic feature of the unfolded structure. It requires bulk solvent and is not seen in hydrated protein powders. The faster process, which is analyzed by neutron backscattering, has a smaller amplitude and requires hydration water, which is also observed with folded proteins in the hydrated state. The self-association had no significant influence on internal relaxation, and thus, a β-casein protein monomer flexibility is preserved in the micelle. We derive spring constants of the faster and slower motions of β-caseins in solution and compared them with those of some proteins in various states (folded or hydrated powder).  相似文献   

3.
If it is assumed that the primary sequence determines the three-dimensional folded structure of a protein, then the regular folding patterns, such as alpha-helix, beta-sheet, and other ordered patterns in the three-dimensional structure must correspond to the periodic distribution of the physical properties of the amino acids along the primary sequence. An AutoRegressive Moving Average (ARMA) model method of spectral analysis is applied to analyze protein sequences represented by the hydrophobicity of their amino acids. The results for several membrane proteins of known structures indicate that the periodic distribution of hydrophobicity of the primary sequence is closely related to the regular folding patterns in a protein's three-dimensional structure. We also applied the method to the transmembrane regions of acetylcholine receptor alpha subunit and Shaker potassium channel for which no atomic resolution structure is available. This work is an extension of our analysis of globular proteins by a similar method.  相似文献   

4.
《Biophysical journal》2022,121(4):540-551
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.  相似文献   

5.
Partial compressibilities of globular proteins in water are reviewed. Contribution of hydrational and of intrinsic compressibilities to experimental partial quantity have been evaluated from ultrasonic data using two independent methods: (a) additive calculation of the hydrational contributions of the surface atomic groups and (b) an analysis of correlation between partial compressibility and molecular surface area. The value (14 ± 3) × 10?6 bar ?1 for the isothermal compressibility coefficient of the protein interior at 25°C was obtained as an average value for variety of globular proteins. This value is similar to that of solid organic polymers. Possible relaxation contribution to partial compressibility is roughly estimated from comparison of thermodynamic with x-ray data on protein compressibility. The average compressibility of water in the hydration shell of proteins was found to be 35 × 10?6 bar ?1, which is 20% less than that of pure water. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The folding specificity of proteins can be simulated using simplified structural models and knowledge-based pair-potentials. However, when the same models are used to simulate systems that contain many proteins, large aggregates tend to form. In other words, these models cannot account for the fact that folded, globular proteins are soluble. Here we show that knowledge-based pair-potentials, which include explicitly calculated energy terms between the solvent and each amino acid, enable the simulation of proteins that are much less aggregation-prone in the folded state. Our analysis clarifies why including a solvent term improves the foldability. The aggregation for potentials without water is due to the unrealistically attractive interactions between polar residues, causing artificial clustering. When a water-based potential is used instead, polar residues prefer to interact with water; this leads to designed protein surfaces rich in polar residues and well-defined hydrophobic cores, as observed in real protein structures. We developed a simple knowledge-based method to calculate interactions between the solvent and amino acids. The method provides a starting point for modeling the folding and aggregation of soluble proteins. Analysis of our simple model suggests that inclusion of these solvent terms may also improve off-lattice potentials for protein simulation, design, and structure prediction.  相似文献   

7.
Water-protein interactions from high-resolution protein crystallography   总被引:1,自引:0,他引:1  
To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level.  相似文献   

8.
The structures at protein-water interface, i.e. the hydration structure of proteins, have been investigated by cryogenic X-ray crystal structure analyses. Hydration structures appeared far clearer at cryogenic temperature than at ambient temperature, presumably because the motions of hydration water molecules were quenched by cooling. Based on the structural models obtained, the hydration structures were systematically analyzed with respect to the amount of water molecules, the interaction modes between water molecules and proteins, the local and the global distribution of them on the surface of proteins. The standard tetrahedral interaction geometry of water in bulk retained at the interface and enabled the three-dimensional chain connection of hydrogen bonds between hydration water molecules and polar protein atoms. Large-scale networks of hydrogen bonds covering the entire surface of proteins were quite flexible to accommodate to the large-scale conformational changes of proteins and seemed to have great influences on the dynamics and function of proteins. The present observation may provide a new concept for discussing the dynamics of proteins in aqueous solution.  相似文献   

9.
We perform a statistical analysis of atomic distributions as a function of the distance R from the molecular geometrical center in a nonredundant set of compact globular proteins. The number of atoms increases quadratically for small R, indicating a constant average density inside the core, reaches a maximum at a size-dependent distance R(max), and falls rapidly for larger R. The empirical curves turn out to be consistent with the volume increase of spherical concentric solid shells and a Fermi-Dirac distribution in which the distance R plays the role of an effective atomic energy epsilon(R) = R. The effective chemical potential mu governing the distribution increases with the number of residues, reflecting the size of the protein globule, while the temperature parameter beta decreases. Interestingly, betamu is not as strongly dependent on protein size and appears to be tuned to maintain approximately half of the atoms in the high density interior and the other half in the exterior region of rapidly decreasing density. A normalized size-independent distribution was obtained for the atomic probability as a function of the reduced distance, r = R/R(g), where R(g) is the radius of gyration. The global normalized Fermi distribution, F(r), can be reasonably decomposed in Fermi-like subdistributions for different atomic types tau, F(tau)(r), with Sigma(tau)F(tau)(r) = F(r), which depend on two additional parameters mu(tau) and h(tau). The chemical potential mu(tau) affects a scaling prefactor and depends on the overall frequency of the corresponding atomic type, while the maximum position of the subdistribution is determined by h(tau), which appears in a type-dependent atomic effective energy, epsilon(tau)(r) = h(tau)r, and is strongly correlated to available hydrophobicity scales. Better adjustments are obtained when the effective energy is not assumed to be necessarily linear, or epsilon(tau)*(r) = h(tau)*r(alpha,), in which case a correlation with hydrophobicity scales is found for the product alpha(tau)h(tau)*. These results indicate that compact globular proteins are consistent with a thermodynamic system governed by hydrophobic-like energy functions, with reduced distances from the geometrical center, reflecting atomic burials, and provide a conceptual framework for the eventual prediction from sequence of a few parameters from which whole atomic probability distributions and potentials of mean force can be reconstructed.  相似文献   

10.
Information on protein internal motions is usually obtained through the analysis of atomic mean-square displacements, which are a measure of variability of the atomic positions distribution functions. We report a statistical approach to analyze molecular dynamics data on these displacements that is based on probability distribution functions. Using a technique inspired by the analysis of variance, we compute unbiased, reliable mean-square displacements of the atoms and analyze them statistically. We applied this procedure to characterize protein thermostability by comparing the results for a thermophilic enzyme and a mesophilic homolog. In agreement with previous experimental observations, our analysis suggests that the proteins surface regions can play a role in the different thermal behavior.  相似文献   

11.
The influence of hydration on the internal dynamics of a typical EF-hand calciprotein, parvalbumin, was investigated by incoherent quasi-elastic neutron scattering (IQNS) and solid-state 13C-NMR spectroscopy using the powdered protein at different hydration levels. Both approaches establish an increase in protein dynamics upon progressive hydration above a threshold that only corresponds to partial coverage of the protein surface by the water molecules. Selective motions are apparent by NMR in the 10-ns time scale at the level of the polar lysyl side chains (externally located), as well as of more internally located side chains (from Ala and Ile), whereas IQNS monitors diffusive motions of hydrogen atoms in the protein at time scales up to 20 ps. Hydration-induced dynamics at the level of the abundant lysyl residues mainly involve the ammonium extremity of the side chain, as shown by NMR. The combined results suggest that peripheral water-protein interactions influence the protein dynamics in a global manner. There is a progressive induction of mobility at increasing hydration from the periphery toward the protein interior. This study gives a microscopic view of the structural and dynamic events following the hydration of a globular protein.  相似文献   

12.
A major result of incoherent elastic neutron-scattering experiments on protein powders is the strong dependence of the intramolecular dynamics on the sample environment. We performed a series of incoherent elastic neutron-scattering experiments on lyophilized human butyrylcholinesterase (HuBChE) powders under different conditions (solvent composition and hydration degree) in the temperature range from 20 to 285 K to elucidate the effect of the environment on the enzyme atomic mean-square displacements. Comparing D(2)O- with H(2)O-hydrated samples, we were able to investigate protein as well as hydration water molecular dynamics. HuBChE lyophilized from three distinct buffers showed completely different atomic mean-square displacements at temperatures above approximately 200 K: a salt-free sample and a sample containing Tris-HCl showed identical small-amplitude motions. A third sample, containing sodium phosphate, displayed highly reduced mean-square displacements at ambient temperature with respect to the other two samples. Below 200 K, all samples displayed similar mean-square displacements. We draw the conclusion that the reduction of intramolecular protein mean-square displacements on an Angstrom-nanosecond scale by the solvent depends not only on the presence of salt ions but also on their type.  相似文献   

13.
The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H(2)O and D(2)O, respectively, revealed that membrane and water motions on the ns-ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049-18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H(2)O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D(2)O (Weik et al. in J Mol Biol 275:632-634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins.  相似文献   

14.
The heat capacity, enthalpy, entropy, and Gibbs energy changes for the temperature-induced unfolding of 11 globular proteins of known three-dimensional structure have been obtained by microcalorimetric measurements. Their experimental values are compared to those we calculate from the change in solvent-accessible surface area between the native proteins and the extended polypeptide chain. We use proportionality coefficients for the transfer (hydration) of aliphatic, aromatic, and polar groups from gas phase to aqueous solution, we estimate vibrational effects, and we discuss the temperature dependence of each constituent of the thermodynamic functions. At 25 degrees C, stabilization of the native state of a globular protein is largely due to two favorable terms: the entropy of non-polar group hydration and the enthalpy of interactions within the protein. They compensate the unfavorable entropy change associated with these interactions (conformational entropy) and with vibrational effects. Due to the large heat capacity of nonpolar group hydration, its stabilizing contribution decreases quickly at higher temperatures, and the two unfavorable entropy terms take over, leading to temperature-induced unfolding.  相似文献   

15.
The effect of hydration on hydrodynamic properties of globular proteins can be expressed in terms of two quantities: the delta (g/g) parameter and the thickness of the hydration layer. The two paradigms on hydration that originate these alternative measures are described and compared. For the numerical calculation of hydrodynamic properties, from which estimates of hydration can be made, we employ the bead modelling with atomic resolution implemented in programs HYDROPRO and HYDRONMR. As typical, average values, we find 0.3 g/g and a thickness of only approximately 1.2 A. However, noticeable differences in this parameter are found from one protein to another. We have made a numerical analysis, which leaves apart marginal influences of modelling imperfections by simulating properties of a spherical protein. This analysis confirms that the errors that one can attribute to the experimental quantities suffice to explain the observed fluctuations in the hydration parameters. However, for the main purpose of predicting protein solution properties, the above mentioned typical values may be safely used. Particularly for atomic bead modelling, a hydrodynamic radius of approximately 3.2 A yields predictions in very good agreement with experiments.  相似文献   

16.
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.  相似文献   

17.
The dynamical transition of proteins,concepts and misconceptions   总被引:1,自引:0,他引:1  
The dynamics of hydrated proteins and of protein crystals can be studied within a wide temperature range, since the water of hydration does not crystallize at low temperature. Instead it turns into an amorphous glassy state below 200 K. Extending the temperature range facilitates the spectral separation of different molecular processes. The conformational motions of proteins show an abrupt enhancement near 180 K, which has been called a "dynamical transition". In this contribution various aspects of the transition are critically reviewed: the role of the instrumental resolution function in extracting displacements from neutron elastic scattering data and the question of the appropriate dynamic model, discrete transitions between states of different energy versus continuous diffusion inside a harmonic well, are discussed. A decomposition of the transition involving two motional components is performed: rotational transitions of methyl groups and small scale librations of side-chains, induced by water at the protein surface. Both processes create an enhancement of the observed amplitude. The onset occurs, when their time scale becomes compatible with the resolution of the spectrometer. The reorientational rate of hydration water follows a super-Arrhenius temperature dependence, a characteristic feature of a dynamical transition. It occurs only with hydrated proteins, while the torsional motion of methyl groups takes place also in the dehydrated or solvent-vitrified system. Finally, the role of fast hydrogen bond fluctuations contributing to the amplitude enhancement is discussed.  相似文献   

18.
J Fitter 《Biophysical journal》1999,76(2):1034-1042
Internal molecular motions of proteins are strongly affected by environmental conditions, like temperature and hydration. As known from numerous studies, the dynamical behavior of hydrated proteins on the picosecond time scale is characterized by vibrational motions in the low-temperature regime and by an onset of stochastic large-amplitude fluctuations at a transition temperature of 180-230 K. The present study reports on the temperature dependence of internal molecular motions as measured with incoherent neutron scattering from the globular water-soluble protein alpha-amylase and from a protein-lipid complex of rhodopsin in disk membranes. Samples of alpha-amylase have been measured in a hydrated and dehydrated state. In contrast to the hydrated sample, which exhibits a pronounced dynamical transition near 200 K, the dehydrated alpha-amylase does not show an appreciable proportion of stochastic large-amplitude fluctuations and no dynamical transition in the measured temperature range of 140-300 K. The obtained results, which are compared to the dynamical behavior of protein-lipid complexes, are discussed with respect to the influence of hydration on the dynamical transition and in the framework of the glass transition.  相似文献   

19.
The tetratricopeptide repeat (TPR) is a 34-residue helix-turn-helix motif that occurs as three or more tandem repeats in a wide variety of proteins. We have determined the repeat motions and backbone fluctuations of proteins containing two or three consensus TPR repeats (CTPR2 and CPTR3, respectively) using 15N NMR relaxation measurements. Rotational diffusion tensors calculated from these data for each repeat within each TPR protein indicate that there is a high degree of motional correlation between different repeats in the same protein. This is consistent with the prevailing view that repeat proteins, such as CTPR2 and CTPR3, behave as single cooperatively folded domains. The internal motions of backbone NH groups were determined using the Lipari-Szabo model-free formalism. For most residues, there was a clear separation between the influence of internal motion and the influence of global rotational tumbling on the observed magnetic relaxation. The local internal motions are highly restricted in most of the helical elements, with slightly greater flexibility in the linker elements. Comparisons between CTPR2 and CTPR3 indicate that an addition of a TPR repeat to the C-terminus (before the solvation helix) of CTPR2 slightly reduces the flexibility of the preceding helix.  相似文献   

20.
The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号