首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γ-Secretase is a fascinating, multi-subunit, intramembrane cleaving protease that is now being considered as a therapeutic target for a number of diseases. Potent, orally bioavailable γ-secretase inhibitors (GSIs) have been developed and tested in humans with Alzheimer's disease (AD) and cancer. Preclinical studies also suggest the therapeutic potential for GSIs in other disease conditions. However, due to inherent mechanism based-toxicity of non-selective inhibition of γ-secretase, clinical development of GSIs will require empirical testing with careful evaluation of benefit versus risk. In addition to GSIs, compounds referred to as γ-secretase modulators (GSMs) remain in development as AD therapeutics. GSMs do not inhibit γ-secretase, but modulate γ-secretase processivity and thereby shift the profile of the secreted amyloid β peptides (Aβ) peptides produced. Although GSMs are thought to have an inherently safe mechanism of action, their effects on substrates other than the amyloid β protein precursor (APP) have not been extensively investigated. Herein, we will review the current state of development of GSIs and GSMs and explore pertinent biological and pharmacological questions pertaining to the use of these agents for select indications. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   

2.
The human low affinity FcγRII family includes both the activating receptor FcγRIIA and the inhibitory receptor FcγRIIB2. These receptors have opposing signaling functions but are both capable of internalizing IgG-containing immune complexes through clathrin-mediated endocytosis. We demonstrate that upon engagement by multivalent aggregated human IgG, FcγRIIA expressed in ts20 Chinese hamster fibroblasts is delivered along with its ligand to lysosomal compartments for degradation, while FcγRIIB2 dissociates from the ligand and is routed separately into the recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase activity or ubiquitylation of receptor lysine residues. The sorting of FcγRIIB2 away from a degradative fate is not due to its lower affinity for IgG and occurs even upon persistent receptor aggregation. Upon co-engagement of FcγRIIA and FcγRIIB2, the receptors are sorted independently to distinct final fates after dissociation of co-clustering ligand. These results reveal fundamental differences in the trafficking behavior of different Fcγ receptors.  相似文献   

3.
Background: The uptake and biotransformation of γ-tocopherol (γ-T) in humans is largely unknown. Using a stable isotope method we investigated these aspects of γ-T biology in healthy volunteers and their response to γ-T supplementation.

Methods: A single bolus of 100 mg of deuterium labeled γ-T acetate (d2-γ-TAC, 94% isotopic purity) was administered with a standard meal to 21 healthy subjects. Blood and urine (first morning void) were collected at baseline and a range of time points between 6 and 240 h post-supplemetation. The concentrations of d2 and d0-γ-T in plasma and its major metabolite 2,7,8-trimethyl-2-(b-carboxyethyl)-6-hydroxychroman (-γ-CEHC) in plasma and urine were measured by GC-MS. In two subjects, the total urine volume was collected for 72 h post-supplementation. The effects of γ-T supplementation on α-T concentrations in plasma and α-T and γ-T metabolite formation were also assessed by HPLC or GC-MS analysis.

Results: At baseline, mean plasma α-T concentration was approximately 15 times higher than γ-T (28.3 vs. 1.9 µmol/l). In contrast, plasma γ-CEHC concentration (0.191 µmol/l) was 12 fold greater than α-CEHC (0.016 µmol/l) while in urine it was 3.5 fold lower (0.82 and 2.87 µmol, respectively) suggesting that the clearance of α-CEHC from plasma was more than 40 times that of γ-CEHC. After d2-γ-TAC administration, the d2 forms of γ-T and γ-CEHC in plasma and urine increased, but with marked inter-individual variability, while the d0 species were hardly affected. Mean total concentrations of γ-T and γ-CEHC in plasma and urine peaked, respectively, between 0–9, 6–12 and 9–24 h post-supplementation with increases over baseline levels of 6–14 fold. All these parameters returned to baseline by 72 h. Following challenge, the total urinary excretion of d2-γ-T equivalents was approximately 7 mg. Baseline levels of γ-T correlated positively with the post-supplementation rise of (d0 + d2) – γ – T and γ-CEHC levels in plasma, but correlated negatively with urinary levels of (d0 + d2)-γ-CEHC. Supplementation with 100 mg γ-TAC had minimal influence on plasma concentrations of α-T and α-T-related metabolite formation and excretion.

Conclusions: Ingestion of 100mg of γ-TAC transiently increases plasma concentrations of γ-T as it undergoes sustained catabolism to CEHC without markedly influencing the pre-existing plasma pool of γ-T nor the concentration and metabolism of α-T. These pathways appear tightly regulated, most probably to keep high steady-state blood ratios α-T to γ-T and γ-CEHC to α-CEHC.  相似文献   

4.
Interferon- (IFN-) and tumor growth inhibitory factor (TGIF) were inducedin vitro in the supernatant from mixed culture of human peripheral blood mononuclear cells (PBMC) and OK-432. TGIF activity was determined by growth inhibition of a human gastric adenocarcinoma cell line, MK-1 cells, and IFN- activity was measured by radioimmunoassay. The production of TGIF and IFN- was time-dependent, reaching its maximum around 48 hrs. Although there was no significant correlation between TGIF production and IFN- production, combination of a subthreshold concentration of recombinant IFN- (rIFN-) and TGIF induced significant growth inhibition of MK-1 cells. This fact indicates that the effects of rIFN- and TGIF are synergistic. The antiproliferative effect of these cytokines are highly species-specific, and their synergistic effects were also species-specific. rIFN--sensitive and -resistant clones were successfully established from the original MK-1 cell line; those clones are both sensitive to TGIF. Synergistic antiproliferative effects were found when the rIFN--sensitive clone, but not the resistant clone, was used as a target, suggesting that the synergistic effects require the target cells' sensitivity to IFN-. These results indicate that the synergistic effects of TGIF and IFN- may produce a clinical antitumor action in cancer patients receiving OK-432 administration.  相似文献   

5.
Tremendous progress has been made in understanding the functions of γ-tubulin and, in particular, its role in microtubule nucleation since the publication of its discovery in 1989. The structure of γ-tubulin has been determined, and the components of γ-tubulin complexes have been identified. Significant progress in understanding the structure of the γ-tubulin ring complex and its components has led to a persuasive model for how these complexes nucleate microtubule assembly. At the same time, data have accumulated that γ-tubulin has important but less well understood functions that are not simply a consequence of its function in microtubule nucleation. These include roles in the regulation of plus-end microtubule dynamics, gene regulation, and mitotic and cell cycle regulation. Finally, evidence is emerging that γ-tubulin mutations or alterations of γ-tubulin expression play an important role in certain types of cancer and in other diseases.  相似文献   

6.
γ-Secretase is a membrane embedded aspartyl protease complex with presenilin as the catalytic component. Along with β-secretase, this enzyme produces the amyloid β-protein of Alzheimer's disease (AD) from the amyloid β-protein precursor. Because of its key role in the pathogenesis of AD, γ-secretase has been a prime target for drug discovery, and many inhibitors of this protease have been developed. The therapeutic potential of these inhibitors is virtually negated by the fact that γ-secretase is an essential part of the Notch signaling pathway, rendering the compounds unacceptably toxic upon chronic exposure. However, these compounds have served as useful chemical tools for biological investigations. In contrast, γ-secretase modulators continue to be of keen interest as possible AD therapeutics. These modulators either shift amyloid β-protein production to shorter, less pathogenic peptides or inhibit the proteolysis of amyloid β-protein precursor selectively compared to that of Notch. The various chemical types of inhibitors and modulators will be discussed, along with their use as probes for basic biology and their potential as AD therapeutics.  相似文献   

7.
8.
The zebrafish genome contains a large number of genes encoding potential cytokine receptor genes as judged by homology to mammalian receptors. The sequences are too divergent to allow unambiguous assignments of all receptors to specific cytokines, and only a few have been assigned functions by functional studies. Among receptors for class II helical cytokines-i.e., IFNs that include virus-induced Ifns (Ifn-) and type II Ifns (Ifn-γ), together with Il-10 and its related cytokines (Il-20, Il-22, and Il-26)-only the Ifn--specific complexes have been functionally identified, whereas the receptors for the two Ifn-γ (Ifn-γ1 and Ifn-γ2) are unknown. In this work, we identify conditions in which Ifn-γ1 and Ifn-γ2 (also called IFNG or IFN-γ and IFN-gammarel) are induced in fish larvae and adults. We use morpholino-mediated loss-of-function analysis to screen candidate receptors and identify the components of their receptor complexes. We find that Ifn-γ1 and Ifn-γ2 bind to different receptor complexes. The receptor complex for Ifn-γ2 includes cytokine receptor family B (Crfb)6 together with Crfb13 and Crfb17, whereas the receptor complex for Ifn-γ1 does not include Crfb6 or Crfb13 but includes Crfb17. We also show that of the two Jak2 paralogues present in the zebrafish Jak2a but not Jak2b is involved in the intracellular transmission of the Ifn-γ signal. These results shed new light on the evolution of the Ifn-γ signaling in fish and tetrapods and contribute toward an integrated view of the innate immune regulation in vertebrates.  相似文献   

9.
10.
Enantiopure (S)-3-hydroxy-γ-butyrolactone (HGB) and its structurally related C3–C4 chemicals are an important target for chiral building blocks in synthetic organic chemistry. For the production of these compounds, more economical and practical synthetic routes are required. To date, chiral HGBs have been produced from petrochemicals and biomass, especially malic acids and carbohydrates. This report provides a short review on the production and application of enantiopure HGBs and their related compounds. Emphasis is focused mainly on synthetic routes using biocatalysis (microbial and chemoenzymatic) and application of these compounds. Biological methods have concentrated on devising different kinds of enzymes for the synthesis of the same compound as shown in the case of hydroxynitrile, a key intermediate of synthetic statins, and integrating unit processes for the optically active HGBs and 4-chloro-3-hydroxybutyrate with recombinant microorganisms expressing multiple enzymes. Chemical methods involve selective hydrogenation of carbohydrate-based starting materials. Both types of pathways will require further improvement to serve as a basis for a scalable route to HGBs and related compounds. Several of their synthetic applications are also introduced.  相似文献   

11.
Qiang L  Accili D 《Cell》2012,148(3):397-398
Peptide hormone fibroblast growth factor-21 (FGF21) has insulin-mimetic properties. Dutchak et?al. now suggest that FGF21 also acts in an autocrine fashion in adipocytes and is required to mediate effects of the PPARγ agonist class of antidiabetic drugs. Does this new property improve FGF21's fledgling clinical prospects or endorse a clinical resuscitation of PPARγ agonists?  相似文献   

12.
Summary -Caseins, involved in the milk clotting process, and human fibrinogen-chain, involved in the blood clotting process, show structural similarities. Several long-casein sections, together corresponding to 80% of the whole protein molecule, have their counterparts in the-chain of fibrinogen, in that 31-42% of the amino acid residues occupy identical positions. The section of-casein which contains the chymosin-sensitive bond has a counterpart not only in the but also in the B-chain of fibrinogen. Furthermore, the secondary structures of the-caseins and of the-chain predicted according to the method of Chou and Fasman present several common features.41th communication on caseins.  相似文献   

13.
14.
Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of d-glutamate (D-PGA), a homo polymer of l-glutamate (L-PGA), and a random copolymer consisting of d- and l-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented.  相似文献   

15.
Biochemistry and molecular genetics of poly-γ-glutamate synthesis   总被引:1,自引:0,他引:1  
Current research into poly-gamma-glutamate (PGA) and its biosynthesis is reviewed. In PGA-producing Bacillus subtilis, glutamate racemase supplies abundant DL-glutamate, the substrate for PGA synthesis. The pgsBCA genes of PGA-producing B. subtilis, which encode the membrane-associated PGA synthetase complex PgsBCA, were characterized and the enzyme complex was suggested to be an atypical amide ligase based on its structure and function. A novel reaction mechanism of PGA synthesis is proposed.  相似文献   

16.
Phospholipase C-γ1 (PLC-γ1) mediates cell adhesion and migration through an undefined mechanism. Here, we examine the role of PLC-γ1 in cell-matrix adhesion in a hanging drop assay of cell aggregation. Plcg1 Null (−/−) mouse embryonic fibroblasts formed aggregates that were larger and significantly more resistant to dissociation than cells in which PLC-γ1 is re-expressed (Null+ cells). Aggregate formation could be disrupted by inhibition of fibronectin interaction with integrins, indicating that fibronectin assembly may mediate aggregate formation. Fibronectin assembly was mediated by integrin α5β1 in both cell lines, while assays measuring fibronectin assembly revealed increased assembly in the Null cells. Null and Null+ cells exhibited equivalent fibronectin mRNA levels and equivalent levels of fibronectin protein in pulse-labeling experiments. However, levels of secreted fibronectin in the conditioned medium were increased in Null cells. The data implicates a negative regulatory role for PLC-γ1 in cell aggregation by controlling the secretion of fibronectin into the media and its assembly into fibrils.  相似文献   

17.
Summary The purification and properties of folylpolyglutamate synthetase fromCorynebacterium sp, and some properties of partially purified enzyme fromLactobacillus casei, Streptococcus faecalis, Neurospora crassa, pig liver, and Chinese hamster ovary cells, are described.TheCorynebacterium enzyme catalyzes a MgATP-dependent addition of glutamate to a variety of reduced pteroate and pteroylmono-, di-, and triglutamate substrates, with the concomitant production of MgADP and phosphate. Although glutamate moieties are added in a sequential fashion, the kinetic mechanism, which is Ordered Ter Ter, precludes the sequential addition of glutamate moieties to enzyme-bound folate. It is suggested that catalysis precedes via the formation of a pteroyl--glutamyl phosphate intermediate.Thein vivo distribution of folylpolyglutamates in bacteria and mammalian cells, which differ from source to source, appear to be a reflection of the ability of folylpolyglutamates to act as substrates for folylpolyglutamate synthetases from different sources.Only one enzyme appears to be involved in the conversion of pteroylmonoglutamates to polyglutamate forms in both bacteria and mammalian cells. Bacterial folylpolyglutamate synthetases use a variety of pteroylmonoglutamates as their preferred monoglutamate substrate, but use 5,10-methylenetetrahydropteroylpolyglutamates as their preferred, and sometimes only, polyglutamate substrate. Mono- and polyglutamyl forms of tetrahydrofolate are the preferred substrates of mammalian folylpolyglutamate synthetases.  相似文献   

18.
Summary Y-peak is found to be a function of ionic strength and concentrations of DNA. The Y-peak reveals close dynamic interaction between DNA and solvent system. Electronic transitions responsible for Y-peak are not the same transitions that are responsible for X-peak. Y-peak's electronic transitions are indicative of charge transfer complex formation between DNA and solvent system.-irradiation induces hyperchromicity due to strand separation at lower doses. A-T base pairs are first to undergo coiled state as shown byTm spread. Strand chopping and saturation of double bonds of the exposed bases by free radicals (H° and OH°) give rise to hypochromic regions at X-peak. Rise in ionic strength and the concentration of DNA has protective effect against-damage. Y-peak is found to be a function of solvent, whereas, X-peak is independent of solvent nature.  相似文献   

19.
Summary -Glutamyl transpeptidase catalyzes transfer of the -glutamyl moiety of glutathione to amino acids, dipeptides, and to glutathione itself; the enzyme also catalyzes the hydrolysis of glutathione to glutamate and cysteinyl-glycine. This review deals with the tissue distribution and localization of the enzyme in mammals, the catalytic properties of the enzyme (including its inhibition by reversible and irreversible inhibitors), structural studies on the enzyme, and new findings about its physiological function.  相似文献   

20.
This is the first report on -tubulin and microtubule arrays during microsporogenesis in a gymnosperm. Meiosis in Ginkgo biloba is polyplastidic, as is typical of the spermatophyte clade, and microtubule arrays are organized at various sites during meiosis and cytokinesis. In early prophase, a cluster of -tubulin globules occurs in the central cytoplasm adjacent to the off-center nucleus. These globules diminish in size and spread over the surface of the nucleus. A system of microtubules focused on the -tubulin forms a reticulate pattern in the cytoplasm. As the nucleus migrates to the center of the microsporocyte, -tubulin becomes concentrated at several sites adjacent to the nuclear envelope. Microtubules organized at these foci of -tubulin give rise to a multipolar prophase spindle. By metaphase I, the spindle has matured into a distinctly bipolar structure with pointed poles. In both first and second meiosis, -tubulin becomes distributed throughout the metaphase spindles, but becomes distinctly polar again in anaphase. In telophase I, -tubulin moves from polar regions to the proximal surface of chromosome groups/nuclei where interzonal microtubules are organized. No cell wall is deposited and the interzonal microtubules embrace a plate of organelles between the two nuclear cytoplasmic domains (NCDs) of the dyad. Following second meiosis, phragmoplasts that form between sister and non-sister nuclei fuse to form a complex six-sided structure that directs simultaneous cytokinesis. -Tubulin becomes associated with nuclei after both meiotic divisions and is especially conspicuous in the distal hemisphere of each young microspore where an unusual encircling system of cortical microtubules develops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号