首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this overview some of our crystallographic and spectroscopic studies on reactive complexes in myoglobin and nitric oxide synthase are summarised. Myoglobin and nitric oxide synthase are both haemoproteins with some similar reaction intermediates. For myoglobin we have studied different intermediates generated in the reaction with hydrogen peroxide by X-ray diffraction, single-crystal microspectrophotometry, electron paramagnetic resonance spectroscopy, Mössbauer spectroscopy, resonance Raman spectroscopy and quantum refinement. Several of these myoglobin states are quite susceptible to radiation-induced changes during crystallographic data collection, and we have observed a radiation-induced change of the ferric resting myoglobin to aqua ferrous myoglobin, of myoglobin compound II to a proposed intermediate H, and of myoglobin compound III to peroxy myoglobin. For the myoglobin compound II/ intermediate H we observe a single-bonded FeIV-O species, which is probably protonated. The long Fe-O bond seen in the crystal structure can be supported by the observation of a new 18O-sensitive resonance Raman mode at 687 cm−1. For nitric oxide synthase we detected with cryobiochemical methods in electron paramagnetic resonance spectra the first biopterin radical serving as electron donor to the ferrous-oxy complex, and that biopterin serves as a proton donor as well, in addition we could observe formation of the Fe(NO) complex with a amino-pterin cofactor capable to form a reactive radical.  相似文献   

2.
Pant K  Crane BR 《Biochemistry》2006,45(8):2537-2544
The crystal structures of nitrosyl-heme complexes of a prokaryotic nitric oxide synthase (NOS) from Bacillus subtilis (bsNOS) reveal changes in active-site hydrogen bonding in the presence of the intermediate N(omega)-hydroxy-l-arginine (NOHA) compared to the substrate l-arginine (l-Arg). Correlating with a Val-to-Ile residue substitution in the bsNOS heme pocket, the Fe(II)-NO complex with both l-Arg and NOHA is more bent than the Fe(II)-NO, l-Arg complex of mammalian eNOS [Li, H., Raman, C. S., Martasek, P., Masters, B. S. S., and Poulos, T. L. (2001) Biochemistry 40, 5399-5406]. Structures of the Fe(III)-NO complex with NOHA show a nearly linear nitrosyl group, and in one subunit, partial nitrosation of bound NOHA. In the Fe(II)-NO complexes, the protonated NOHA N(omega) atom forms a short hydrogen bond with the heme-coordinated NO nitrogen, but active-site water molecules are out of hydrogen bonding range with the distal NO oxygen. In contrast, the l-Arg guanidinium interacts more weakly and equally with both NO atoms, and an active-site water molecule hydrogen bonds to the distal NO oxygen. This difference in hydrogen bonding to the nitrosyl group by the two substrates indicates that interactions provided by NOHA may preferentially stabilize an electrophilic peroxo-heme intermediate in the second step of NOS catalysis.  相似文献   

3.
Kabir M  Sudhamsu J  Crane BR  Yeh SR  Rousseau DL 《Biochemistry》2008,47(47):12389-12397
Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.  相似文献   

4.
Unlike animal nitric-oxide synthases (NOSs), the bacterial NOS enzymes have no attached flavoprotein domain to reduce their heme and so must rely on unknown bacterial proteins for electrons. We tested the ability of two Bacillus subtilis flavodoxins (YkuN and YkuP) to support catalysis by purified B. subtilis NOS (bsNOS). When an NADPH-utilizing bacterial flavodoxin reductase (FLDR) was added to reduce YkuP or YkuN, both supported NO synthesis from either L-arginine or N-hydroxyarginine and supported a linear nitrite accumulation over a 30-min reaction period. Rates of nitrite production were directly dependent on the ratio of YkuN or YkuP to bsNOS. However, the V/Km value for YkuN (5.2 x 10(5)) was about 20 times greater than that of YkuP (2.6 x 10(4)), indicating YkuN is more efficient in supporting bsNOS catalysis. YkuN that was either photo-reduced or prereduced by FLDR transferred an electron to the bsNOS ferric heme at rates similar to those measured for heme reduction in the animal NOSs. YkuN supported a similar NO synthesis activity by a different bacterial NOS (Deinococcus radiodurans) but not by any of the three mammalian NOS oxygenase domains nor by an insect NOS oxygenase domain. Our results establish YkuN as a kinetically competent redox partner for bsNOS and suggest that FLDR/flavodoxin proteins could function physiologically to support catalysis by bacterial NOSs.  相似文献   

5.
Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.  相似文献   

6.
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS.  相似文献   

7.
Boggs S  Huang L  Stuehr DJ 《Biochemistry》2000,39(9):2332-2339
To better understand the mechanism of nitric oxide (NO) synthesis, we studied conversion of N-hydroxy-L-arginine (NOHA) or L-arginine (Arg) to citrulline and NO under single-turnover conditions using the oxygenase domain of neuronal nitric oxide synthase (nNOSoxy) and rapid scanning stopped-flow spectroscopy. When anaerobic nNOSoxy saturated with H(4)B and NOHA was provided with 0.5 or 1 electron per heme and then exposed to air at 25 degrees C, it formed 0.5 or 1 mol of citrulline/mol of heme, respectively, indicating that NOHA conversion had 1:1 stoichiometry with respect to electrons added. Identical experiments with Arg produced substoichiometric amounts of NOHA or citrulline even when up to 3 electrons were provided per heme. Transient spectral intermediates were investigated at 10 degrees C. For NOHA, four species were observed in the following sequence: starting ferrous nNOSoxy, a transient ferrous-dioxygen complex, a transient ferric-NO complex, and ferric nNOSoxy. For Arg, transient intermediates other than the ferrous-dioxygen species were not apparent during the reaction. Our results provide a kinetic framework for formation and reactions of the ferrous-dioxygen complex in each step of NO synthesis and establish that (1) the ferrous-dioxy enzyme reacts quantitatively with NOHA but not with Arg and (2) its reaction with NOHA forms 1 NO/heme, which immediately binds to form a ferric heme-NO complex.  相似文献   

8.
Nitric oxide (NO) is synthesised by a two-step oxidation of -arginine (L-Arg) in the active site of nitric oxide synthase (NOS) with formation of an intermediate, N omega-hydroxy-L-Arg (NOHA). Crystal structures of NOSs have shown the importance of an active-site Val567 residue (numbered for rat neuronal NOS, nNOS) interacting with non-amino acid substrates. To investigate the role of this Val residue in substrate recognition and NO-formation activity by nNOS, we generated and purified four Val567 mutants of nNOS, Val567Leu, Val567Phe, Val567Arg and Val567Glu. We characterized these proteins and tested their ability to generate NO from the oxidation of natural substrates L-Arg and NOHA, and from N-hydroxyguanidines previously identified as alternative substrates for nNOS. The Val567Leu mutant displayed lower NO formation activities than the wild type (WT) in the presence of all tested compounds. Surprisingly, the Val567Phe mutant formed low amounts of NO only from NOHA. These two mutants displayed lower affinity for L-Arg and NOHA than the WT protein. Val576Glu and Val567Arg mutants were much less stable and did not lead to any formation of NO. These results suggest that Val567 is an important residue for preserving the integrity of the active site, for substrate binding, and subsequently for NO-formation in nNOS.  相似文献   

9.
How 6R-tetrahydrobiopterin (H(4)B) participates in Arg hydroxylation as catalyzed by the nitric oxide synthases (NOSs) is a topic of current interest. Previous work with the oxygenase domain of inducible NOS (iNOSoxy) demonstrated that H(4)B radical formation is kinetically coupled to disappearance of an initial heme-dioxy intermediate and to Arg hydroxylation in a single turnover reaction run at 10 degrees C [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. Here we used 5-methyl-H(4)B to investigate how pterin structure influences radical formation and associated catalytic steps. In the presence of Arg, the heme-dioxy intermediate in 5-methyl-H(4)B-bound iNOSoxy reacted at a rate of 35 s(-)(1), which is 3-fold faster than with H(4)B. This was coupled to a faster rate of 5-methyl-H(4)B radical formation (40 vs 12.5 s(-)(1)) and to a faster and more productive Arg hydroxylation. The EPR spectrum of the enzyme-bound 5-methyl-H(4)B radical had different hyperfine structure than the bound H(4)B radical and exhibited a 3-fold longer half-life after its formation. A crystal structure of 5-methyl-H(4)B-bound iNOSoxy revealed that there are minimal changes in conformation of the bound pterin or in its interactions with the protein as compared to H(4)B. Together, we conclude the following: (1) The rate of heme-dioxy reduction is linked to pterin radical formation and is sensitive to pterin structure. (2) Faster heme-dioxy reduction increases the efficiency of Arg hydroxylation but still remains rate limiting for the reaction. (3) The 5-methyl group influences heme-dioxy reduction by altering the electronic properties of the pterin rather than changing protein structure or interactions. (4) Faster electron transfer from 5-methyl-H(4)B may be due to increased radical stability afforded by the N-5 methyl group.  相似文献   

10.
Pant K  Bilwes AM  Adak S  Stuehr DJ  Crane BR 《Biochemistry》2002,41(37):11071-11079
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals.  相似文献   

11.
We are combining stopped-flow, stop-quench, and rapid-freezing kinetic methods to help clarify the unique redox roles of tetrahydrobiopterin (H(4)B) in NO synthesis, which occurs via the consecutive oxidation of L-arginine (Arg) and N-hydroxy-L-arginine (NOHA). In the Arg reaction, H(4)B radical formation is coupled to reduction of a heme Fe(II)O(2) intermediate. The tempo of this electron transfer is important for coupling Fe(II)O(2) formation to Arg hydroxylation. Because H(4)B provides this electron faster than can the NOS reductase domain, H(4)B appears to be a kinetically preferred source of the second electron for oxygen activation during Arg hydroxylation. A conserved Trp (W457 in mouse inducible NOS) has been shown to influence product formation by controlling the kinetics of H(4)B electron transfer to the Fe(II)O(2) intermediate. This shows that the NOS protein tunes H(4)B redox function. In the NOHA reaction the role of H(4)B is more obscure. However, existing evidence suggests that H(4)B may perform consecutive electron donor and acceptor functions to reduce the Fe(II)O(2) intermediate and then ensure that NO is produced from NOHA.  相似文献   

12.
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.  相似文献   

13.
Nitric oxide synthases (NOSs) catalyze two mechanistically distinct, tetrahydrobiopterin (H(4)B)-dependent, heme-based oxidations that first convert L-arginine (L-Arg) to N(omega)-hydroxy-L-arginine (NHA) and then NHA to L-citrulline and nitric oxide. Structures of the murine inducible NOS oxygenase domain (iNOS(ox)) complexed with NHA indicate that NHA and L-Arg both bind with the same conformation adjacent to the heme iron and neither interacts directly with it nor with H(4)B. Steric restriction of dioxygen binding to the heme in the NHA complex suggests either small conformational adjustments in the ternary complex or a concerted reaction of dioxygen with NHA and the heme iron. Interactions of the NHA hydroxyl with active center beta-structure and the heme ring polarize and distort the hydroxyguanidinium to increase substrate reactivity. Steric constraints in the active center rule against superoxo-iron accepting a hydrogen atom from the NHA hydroxyl in their initial reaction, but support an Fe(III)-peroxo-NHA radical conjugate as an intermediate. However, our structures do not exclude an oxo-iron intermediate participating in either L-Arg or NHA oxidation. Identical binding modes for active H(4)B, the inactive quinonoid-dihydrobiopterin (q-H(2)B), and inactive 4-amino-H(4)B indicate that conformational differences cannot explain pterin inactivity. Different redox and/or protonation states of q-H(2)B and 4-amino-H(4)B relative to H(4)B likely affect their ability to electronically influence the heme and/or undergo redox reactions during NOS catalysis. On the basis of these structures, we propose a testable mechanism where neutral H(4)B transfers both an electron and a 3,4-amide proton to the heme during the first step of NO synthesis.  相似文献   

14.
Chen Y  Panda K  Stuehr DJ 《Biochemistry》2002,41(14):4618-4625
Homodimer formation is a key step that follows heme incorporation during assembly of an active inducible nitric oxide synthase (iNOS). In cells, heme incorporation into iNOS becomes limited due to interaction between self-generated NO and cellular heme [Albakri, Q., and Stuehr, D. J. (1996) J. Biol. Chem. 271, 5414-5421]. Here we investigated if NO can regulate at points downstream in the process by inhibiting dimerization of heme-containing iNOS monomer. Heme-containing monomers were generated by treating iNOS dimer or iNOS oxygenase domain dimer (iNOSoxy) with urea. Both monomers dimerized when incubated with Arg and 6R-tetrahydrobiopterin (H4B), as shown previously [Abu-Soud, H. M., Loftus, M., and Stuehr, D. J. (1995) Biochemistry 34, 11167-11175]. The NO-releasing drug S-nitrosyl-N-acetyl-D,L-penicillamine (SNAP; 0-0.5 mM) inhibited dimerization of iNOS monomer in a dose- and time-dependent manner, without causing heme release. SNAP-pretreated monomer also did not dimerize in response to H4B plus Arg. SNAP converted Arg- and H4B-free iNOS dimer into monomer that could not redimerize, but had no effect on iNOS dimer preincubated with Arg and H4B. Anaerobic spectral analysis showed that NO from SNAP bound to the ferric heme of iNOSoxy monomer or dimer. Adding imidazole as an alternative heme ligand prevented SNAP from inhibiting iNOS monomer dimerization. We conclude that NO and related species can block iNOS dimerization at points downstream from heme incorporation. The damage to heme-containing monomer results from a reaction with the protein and appears irreversible. Although dimeric structure alone does not protect, it does enable Arg and H4B to bind and protect. Inhibition appears mediated by NO coordinating to the ferric heme iron of the monomer.  相似文献   

15.
Bacterial NO synthase (NOS)-like proteins such as that from Bacillus subtilis (bsNOS) share a high degree of structural homology with the oxygenase domain of mammalian NOSs (mNOSs), but biochemical studies have yet failed to establish that they are specifically capable of producing NO. To better understand the actual function and role of bacterial NOSs, the structure and environment of bsNOS heme were examined with resonance Raman (RR) and ATR-FTIR spectroscopies. We analyzed the structural effects of l-arginine (Arg) and tetrahydrobiopterin (H(4)B) binding on several key complexes (ferric, ferrous, ferrous-CO, and ferric-NO) and characterized the bonding properties of the proximal cysteine ligand. While our study fully confirms the similarity between bsNOS and mNOS heme pocket structures, our results also highlight important differences. (i) Contrary to other NOSs, resting native ferric bsNOS exhibits an exclusive five-coordinate high-spin iron status. (ii) The nu(Fe)(-)(CO) and nu(CO) mode frequencies of the bsNOS Fe(II)CO complexes indicate a weaker electrostatic interaction between Arg and CO. (iii) bsNOS is characterized by a stronger Fe-S bond (nu(Fe)(-)(S) = 342 cm(-)(1)), a lower nu(4) frequency, and a negative shift in the nu(Fe)(-)(CO)/nu(CO) correlation. (iv) The effects of H(4)B on bsNOS heme structure are minor compared to the ones reported on mNOS. These results suggest distinct distal heme environments between mNOS and bsNOS, greater electron-donation properties of bsNOS cysteine proximal ligand, and the absence of a significant influence of H(4)B on bsNOS heme properties. These subtle structural differences may reflect changes in the chemistry and physiological role of bacterial NOSs.  相似文献   

16.
We report here the resonance Raman spectra of the FeIII-NO and FeII-NO complexes of the bacterial NOSs (nitric oxide synthases) from Staphylococcus aureus and Bacillus subtilis. The haem-NO complexes of these bacterial NOSs displayed Fe-N-O frequencies similar to those of the mammalian NOSs, in presence and absence of L-arginine, indicating that haem-bound NO and L-arginine had similar haem environments in bacterial and mammalian NOSs. The only notable difference between the two types of NOS was the lack of change in Fe-N-O frequencies of the FeIII-NO complexes upon (6R) 5,6,7,8-tetrahydro-L-biopterin binding to bacterial NOSs. We report, for the first time, the characterization of NO complexes with NOHA (N(omega)-hydroxy-L-arginine), the substrate used in the second half of the catalytic cycle of NOSs. In the FeIII-NO complexes, both L-arginine and NOHA induced the Fe-N-O bending mode at nearly the same frequency as a result of a steric interaction between the substrates and the haem-bound NO. However, in the FeII-NO complexes, the Fe-N-O bending mode was not observed and the nu(Fe-NO) mode displayed a 5 cm(-1) higher frequency in the complex with NOHA than in the complex with L-arginine as a result of direct interactions that probably involve hydrogen bonds. The different behaviour of the substrates in the FeII-NO complexes thus reveal that the interactions between haem-bound NO and the substrates are finely tuned by the geometry of the Fe-ligand structure and are relevant to the use of the FeII-NO complex as a model of the oxygenated complex of NOSs.  相似文献   

17.
Nitric oxide synthase (EC 1.14.13.39; NOS) converts L-arginine into NO and L-citrulline in a two-step reaction with Nomega-hydroxy-L-arginine (NOHLA) as an intermediate. The active site iron in NOS has thiolate axial heme-iron ligation as found in the related monooxygenase cytochrome P450. In NOS, tetrahydrobiopterin (BH4) is an essential cofactor for both steps, but its function is controversial. Previous optical studies of the reaction between reduced NOS with O2 at -30 degrees C suggested that BH4 may serve as an one-electron donor in the first cycle, implying formation of a trihydrobiopterin radical. We investigated the same reaction under identical conditions with electron paramagnetic resonance spectroscopy. With BH4-containing full-length neuronal NOS we obtained an organic free radical (g-value 2.0042) in the presence of Arg, and a similar radical was observed with the endothelial NOS oxygenase domain in the presence of Arg and BH4. Without substrate the radical yield was greatly (10x) diminished. Without BH4, or with NOHLA instead of Arg, no radical was observed. With 6-methyltetrahydropterin or 5-methyl-BH4 instead of BH4, radicals with somewhat different spectra were formed. On the basis of simulations we assign the signals to trihydropterin radical cations protonated at N5. This is the first study that demonstrates the formation of a protonated trihydrobiopterin radical with the constitutive isoforms of NOS, and the first time the radical was obtained without exogenous BH4. These results offer strong support for redox cycling of BH4 in the first reaction cycle of NOS catalysis (BH4 <--> BH3.H+).  相似文献   

18.
Wang ZQ  Wei CC  Santolini J  Panda K  Wang Q  Stuehr DJ 《Biochemistry》2005,44(12):4676-4690
Nitric oxide synthases (NOSs) are flavo-heme enzymes that require (6R)-tetrahydrobiopterin (H(4)B) for activity. Our single-catalytic turnover study with the inducible NOS oxygenase domain showed that a conserved Trp that interacts with H(4)B (Trp457 in mouse inducible NOS) regulates the kinetics of electron transfer between H(4)B and an enzyme heme-dioxy intermediate, and this in turn alters the kinetics and extent of Arg hydroxylation [Wang, Z.-Q., et al. (2001) Biochemistry 40, 12819-12825]. To investigate the impact of these effects on NADPH-driven NO synthesis by NOS, we generated and characterized the W457A mutant of inducible NOS and the corresponding W678A and W678F mutants of neuronal NOS. Mutant defects in protein solubility and dimerization were overcome by purifying them in the presence of sufficient Arg and H(4)B, enabling us to study their physical and catalytic profiles. Optical spectra of the ferric, ferrous, heme-dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to that of the wild type. However, the mutants had higher apparent K(m) values for H(4)B and in one mutant for Arg (W457A). They all had lower NO synthesis activities, uncoupled NADPH consumption, and a slower and less prominent buildup of enzyme heme-NO complex during steady-state catalysis. Further analyses showed the mutants had normal or near-normal heme midpoint potential and heme-NO complex reactivity with O(2), but had somewhat slower ferric heme reduction rates and markedly slower reactivities of their heme-dioxy intermediate. We conclude that the conserved Trp (1) has similar roles in two different NOS isozymes and (2) regulates delivery of both electrons required for O(2) activation (i.e., kinetics of ferric heme reduction by the NOS flavoprotein domain and reduction of the heme-dioxy intermediate by H(4)B). However, its regulation of H(4)B electron transfer is most important because this ensures efficient coupling of NADPH oxidation and NO synthesis by NOS.  相似文献   

19.
The nitric-oxide synthases (NOSs) make nitric oxide and citrulline from l-arginine. How the bound cofactor (6R)-tetrahydrobiopterin (H4B) participates in Arg hydroxylation is a topic of interest. We demonstrated previously that H4B radical formation in the inducible NOS oxygenase domain (iNOSoxy) is kinetically coupled to the disappearance of a heme-dioxy intermediate and to Arg hydroxylation. Here we report single turnover studies that determine and compare the kinetics of these transitions in Arg hydroxylation reactions catalyzed by the oxygenase domains of endothelial and neuronal NOSs (eNOSoxy and nNOSoxy). There was a buildup of a heme-dioxy intermediate in eNOSoxy and nNOSoxy followed by a monophasic transition to ferric enzyme during the reaction. The rate of heme-dioxy decay matched the rates of H4B radical formation and Arg hydroxylation in both enzymes. The rates of H4B radical formation differed such that nNOSoxy (18 s(-1)) > iNOSoxy (11 s(-1)) > eNOSoxy (6 s(-1)), whereas the lifetimes of the resulting H4B radical followed an opposite rank order. 5MeH4B supported a three-fold faster radical formation and greater radical stability relative to H4B in both eNOSoxy and nNOSoxy. Our results indicate the following: (i) the three NOSs share a common mechanism, whereby H4B transfers an electron to the heme-dioxy intermediate. This step enables Arg hydroxylation and is rate-limiting for all subsequent steps in the hydroxylation reaction. (ii) A direct correlation exists between pterin radical stability and the speed of its formation in the three NOSs. (iii) Uncoupled NO synthesis often seen for eNOS at low H4B concentrations may be caused by the slow formation and poor stability of its H4B radical.  相似文献   

20.
Nitric-oxide synthases are flavoheme enzymes that catalyze two sequential monooxygenase reactions to generate nitric oxide (NO) from l-arginine. We investigated a possible redox role for the enzyme-bound cofactor 6R-tetrahydrobiopterin (H4B) in the second reaction of NO synthesis, which is conversion of N-hydroxy-l-arginine (NOHA) to NO plus citrulline. We used stopped-flow spectroscopy and rapid-freeze EPR spectroscopy to follow heme and biopterin transformations during single-turnover NOHA oxidation reactions catalyzed by the oxygenase domain of inducible nitric-oxide synthase (iNOSoxy). Significant biopterin radical (>0.5 per heme) formed during reactions catalyzed by iNOSoxy that contained either H4B or 5-methyl-H4B. Biopterin radical formation was kinetically linked to conversion of a heme-dioxy intermediate to a heme-NO product complex. The biopterin radical then decayed within a 200-300-ms time period just prior to dissociation of NO from a ferric heme-NO product complex. Measures of final biopterin redox status showed that biopterin radical decay occurred via an enzymatic one-electron reduction process that regenerated H4B (or 5MeH4B). These results provide evidence of a dual redox function for biopterin during the NOHA oxidation reaction. The data suggest that H4B first provides an electron to a heme-dioxy intermediate, and then the H4B radical receives an electron from a downstream reaction intermediate to regenerate H4B. The first one-electron transition enables formation of the heme-based oxidant that reacts with NOHA, while the second one-electron transition is linked to formation of a ferric heme-NO product complex that can release NO from the enzyme. These redox roles are novel and expand our understanding of biopterin function in biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号