首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epilepsy, a prevalent neurological disease characterized by spontaneous recurrent seizures (SRS), is often refractory to treatment with anti-seizure drugs (ASDs), so that more effective ASDs are urgently needed. For this purpose, it would be important to develop, validate, and implement new animal models of pharmacoresistant epilepsy into drug discovery. Several chronic animal models with difficult-to-treat SRS do exist; however, most of these models are not suited for drug screening, because drug testing on SRS necessitates laborious video-EEG seizure monitoring. More recently, it was proposed that, instead of monitoring SRS, chemical or electrical induction of acute seizures in epileptic rodents may be used as a surrogate for testing the efficacy of novel ASDs against refractory SRS. Indeed, several ASDs were shown to lose their efficacy on acute seizures, when such seizures were induced by pentylenetetrazole (PTZ) in epileptic rather than nonepileptic rats, whereas this was not observed when using the maximal electroshock seizure test. Subsequent studies confirmed the loss of anti-seizure efficacy of valproate against PTZ-induced seizures in epileptic mice, but several other ASDs were more potent against PTZ in epileptic than nonepileptic mice. This was also observed when using the 6-Hz model of partial seizures in epileptic mice, in which the potency of levetiracetam, in particular, was markedly increased compared to nonepileptic animals. Overall, these observations suggest that performing acute seizure tests in epileptic rodents provides valuable information on the pharmacological profile of ASDs, in particular those with mechanisms inherent to disease-induced brain alterations. However, it appears that further work is needed to define optimal approaches for acute seizure induction and generation of epileptic/drug refractory animals that would permit reliable screening of new ASDs with improved potential to provide seizure control in patients with pharmacoresistant epilepsy.  相似文献   

2.
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.  相似文献   

3.
Febrile seizures are frequent during early childhood, and prolonged (complex) febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A rise in brain pH is known to enhance neuronal excitability. Here we show that hyperthermia causes respiratory alkalosis in the immature brain, with a threshold of 0.2-0.3 pH units for seizure induction. Suppressing alkalosis with 5% ambient CO2 abolished seizures within 20 s. CO2 also prevented two long-term effects of hyperthermic seizures in the hippocampus: the upregulation of the I(h) current and the upregulation of CB1 receptor expression. The effects of hyperthermia were closely mimicked by intraperitoneal injection of bicarbonate. Our work indicates a mechanism for triggering hyperthermic seizures and suggests new strategies in the research and therapy of fever-related epileptic syndromes.  相似文献   

4.
The action of a water-soluble benzodiazepine midazolam (0.1 and 1 mg/kg i.p.) was tested against three models of spike-and-wave rhythm in rats: rhythmic metrazol activity (a model of human absence seizures), minimal metrazol seizures, and epileptic afterdischarges induced by low-frequency cortical stimulation (probably models of human myoclonic seizures). Midazolam was able to reduce spike-and-wave activity in all three models, but there were quantitative differences: the lower dose was effective only against rhythmic metrazol activity, but its action against two other models was negligible, whereas the higher dose of midazolam resulted in significant effects in all three models. These quantitative differences are not sufficient to prove our hypothesis that the spike-and-wave rhythm represents different phenomena in various models. A spread of epileptic activity into brain structures other than the thalamocortical system determines the type of epileptic seizures.  相似文献   

5.
6.
Data on convulsant and anticonvulsant action of drugs influencing excitatory amino acid receptors in developing rats are reviewed. Agonists of NMDA type of receptors NMDA and homocysteic acid, elicited an age-related seizure pattern--flexion, emprosthotonic seizures--in the first three postnatal weeks of rats. Generalized clonic-tonic seizures appeared only after a longer latency. Kainic acid administration resulted in epileptic automatisms and later in minimal, clonic seizures followed by generalized tonic-clonic seizures. A decrease of sensitivity to convulsant action with age is a general rule for all agonists tested. Different anticonvulsant action of NMDA and nonNMDA antagonists was demonstrated in a model of generalized tonic-clonic seizures induced by pentetrazol, whereas their action against epileptic afterdischarges elicited by electrical stimulation of cerebral cortex was similar. Again, higher efficacy in younger animals was a rule. As far as metabotropic glutamate receptors are concerned, agonists of groups II and III were shown to protect against convulsant action of homocysteic acid in immature rats and an antagonist of group I receptors MPEP suppressed the tonic phase of generalized tonic-clonic seizures induced by pentetrazol more efficiently in younger than in more mature rat pups. Unfortunately, a higher sensitivity to the action of antagonists of ionotropic glutamate receptors was demonstrated also for unwanted side effects (motor functions were compromized). In contrast, glutamate metabotropic receptor antagonist MPEP did not exhibit any serious side effects in rat pups.  相似文献   

7.
Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development.  相似文献   

8.
Mitochondrial dysfunction has been identified as one potential cause of epileptic seizures. Impaired mitochondrial function has been reported for the seizure focus of patients with temporal lobe epilepsy and Ammon's horn sclerosis and of adult and immature animal models of epilepsy. Since mitochondrial oxidative phosphorylation provides the major source of ATP in neurons and mitochondria participate in cellular Ca(2+) homeostasis and generation of reactive oxygen species, their dysfunction strongly affects neuronal excitability and synaptic transmission. Therefore, mitochondrial dysfunction is proposed to be highly relevant for seizure generation. Additionally, mitochondrial dysfunction is known to trigger neuronal cell death, which is a prominent feature of therapy-resistant epilepsy. For this reason mitochondria have to be considered as promising targets for neuroprotective strategies in epilepsy.  相似文献   

9.
We retrospectively evaluated a set of 205 children with autism and compared it to the partial sub-set of 71 (34.6%) children with a history of regression. From 71 children with regression, signs of epileptic processes were present in 43 (60.6%), 28 (65.12%) suffered clinical epileptic seizures, and 15 (34.9%) just had an epileptiform abnormality on the EEG. In our analysis, autistic regression is substantially more associated with epileptic process symptoms than in children with autism and no history of regression. More than 90% of children with a history of regression also show IQ < 70 and reduced functionality. Functionality and IQ further worsens with the occurrence of epileptic seizures (98% of children with regression and epilepsy have IQ < 70). We proved that low IQ and reduced functionality significantly correlate rather with epileptic seizures than just sub-clinical epileptiform abnormality on EEG. Clinical epileptic seizures associated with regression significantly influence the age of regression and its clinical type. The age of regression is higher compared to children with regression without epileptic seizures (in median: 35 months of age in patients with seizures while only 24 months in other patients). Patients with seizures revealed regression after 24th months of age in 68% of cases, while patients without seizures only in 27%. However, coincidence with epilepsy also increased the occurrence of regression before the 18th month of age (23% of patients), while only 4% of patients without epilepsy revealed regression before the 18th month. Epileptic seizures are significantly associated especially with behaviour regression rather than speech regression or regression in both behaviour and speech. Also epileptic seizures diagnosed before correct diagnosis of autism were significantly associated with delayed regression (both behavioural and speech regression).  相似文献   

10.
ObjectiveEpileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats.MethodsSeizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal periods were then recorded and analyzed to predict epileptic seizures. Epileptic seizures were predicted by calculating an index in consecutive windows of EEG signal and comparing the index with a threshold. In this work, a newly proposed dissimilarity index called Bhattacharyya Based Dissimilarity Index (BBDI), dynamical similarity index and fuzzy similarity index were investigated.ResultsBBDI, dynamical similarity index and fuzzy similarity index were examined on case and control groups and compared to each other. The results show that BBDI outperforms dynamical and fuzzy similarity indices. In order to improve the results, EEG sub-bands were also analyzed. The best result achieved when the proposed dissimilarity index was applied on Delta sub-band that predicts epileptic seizures in all rats with a mean of 299.5 s.ConclusionThe dissimilarity of neural network activity between reference window and present window of EEG signal has a significant increase prior to an epileptic seizure and the proposed dissimilarity index (BBDI) can reveal this variation to predict epileptic seizures. In addition, analyzing EEG sub-bands results in more accurate information about constituent neuronal activities underlying the EEG since certain changes in EEG signal may be amplified when each sub-band is analyzed separately.SignificanceThis paper presents application of a dissimilarity index (BBDI) on EEG signals and its sub-bands to predict PTZ-induced epileptic seizures in rats. Based on the results of this work, BBDI will predict epileptic seizures more accurately and more reliably compared to current indices that increases epileptic patient comfort and improves patient outcomes.  相似文献   

11.
The ontogeny of epileptic seizures in spontaneously epileptic rats (SER; zi/zi, tm/tm) was studied by examining behaviour and electroencephalogram (EEG) simultaneously. Weight gain and survival time were also studied. Compared with the control Kyo:Wistar rats, SER showed a much smaller increase in body weight. All male and female SER died before 20 and 18 weeks of age, respectively. Body tremor was observed at 2 weeks of age but disappeared after 11 weeks. Staggering gait appeared after 7 weeks of age, and intensified with age. Absence-like seizures characterized by paroxysmal appearance of 5-7 Hz spike-wave-like complexes were observed in the cortical or hippocampal EEG after 5 weeks of age, and tonic seizures with low voltage fast waves were observed after 6 weeks of age. All SER exhibited both absence-like and tonic seizures with high frequencies from 12 weeks of age. Differences with other spontaneous rat models of epilepsy and application methods for estimating seizure-inhibitory effects of anti-epileptic drugs are discussed.  相似文献   

12.
Matrix metalloproteases (MMPs) degrade or modify extracellular matrix or membrane-bound proteins in the brain. MMP-2 and MMP-9 are activated by treatments that result in a sustained neuronal depolarization and are thought to contribute to neuronal death and structural remodeling. At the synapse, MMP actions on extracellular proteins contribute to changes in synaptic efficacy during learning paradigms. They are also activated during epileptic seizures, and MMP-9 has been associated with the establishment of aberrant synaptic connections after neuronal death induced by kainate treatment. It remains unclear whether MMPs are activated by epileptic activities that do not induce cell death. Here we examine this point in two animal models of epilepsy that do not involve extensive cell damage. We detected an elevation of MMP-9 enzymatic activity in cortical regions of secondary generalization after focal seizures induced by 4-aminopyridine (4-AP) application in rats. Pro-MMP-9 levels were also higher in Wistar Glaxo Rijswijk (WAG/Rij) rats, a genetic model of generalized absence epilepsy, than they were in Sprague–Dawley rats, and this elevation was correlated with diurnally occurring spike-wave-discharges in WAG/Rij rats. The increased enzymatic activity of MMP-9 in these two different epilepsy models is associated with synchronized neuronal activity that does not induce widespread cell death. In these epilepsy models MMP-9 induction may therefore be associated with functions such as homeostatic synaptic plasticity rather than neuronal death.  相似文献   

13.
A model of coupled neural masses can generate seizure-like events and dynamics similar to those observed during interictal to ictal transitions and thus can be used for theoretical study of the control of epileptic seizures. In an effort to understand the mechanisms underlying epileptic seizures and how to avoid them, we added a control input to this model. Epileptic seizures are always accompanied by hypersynchronous firing of neurons, so research on synchronization among cortical areas is significant for seizure control. In this study, principal component analysis (PCA) was used to identify synchronization clusters composed of several neural masses. A method for calculating the synchronization cluster strength and participation rate is presented. The synchronization cluster strength can be used to identify synchronization clusters and the participation rate can be employed to identify neural masses that participate in the clusters. Each synchronization cluster is controlled as a whole using a proportional-integral-derivative (PID) controller. We illustrate these points using coupled neural mass models of synchronization to show their responses to increased (between node) coupling with and without control. Experiment results indicated that PID control can effectively regulate synchronization between neural masses and has the potential for seizure prevention.  相似文献   

14.
Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetic rat models, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment.  相似文献   

15.
Gene therapy represents an innovative and promising alternative for the treatment of epileptic patients who are resistant to conventional antiepileptic drugs. Among the various approaches for the application of gene therapy in the treatment of CNS disorders, recombinant viral vectors have been most widely used so far. Several gene targets could be used to correct the compromized balance between inhibitory and excitatory transmission in epilepsy. Transduction of neuropeptide genes such as galanin and neuropeptide Y (NPY) in specific brain areas in experimental models of seizures resulted in significant anticonvulsant effects. In particular, the long-lasting NPY over-expression obtained in the rat hippocampus using intracerebral application of recombinant adeno-associated viral (AAV) vectors reduced the generalization of seizures from their site of onset, delayed acquisition of fully kindled seizures and afforded neuroprotection. These results establish a proof-of-principle for the applicability of AAV-NPY vectors for the inhibition of seizures in epilepsy. Additional investigations are required to demonstrate a therapeutic role of gene therapy in chronic models of seizures and to address in more detail safety concerns and possible side-effects.  相似文献   

16.
The synchronization among the activities of neural populations in functional regions is one of the most important electrophysiological phenomena in epileptic brains. The spatiotemporal dynamics of phase synchronization was investigated to reveal the reciprocal interaction between different functional regions during epileptogenesis. Local field potentials (LFPs) were recorded simultaneously from the basolateral amygdala (BLA), the cornu ammonis 1 of hippocampus (CA1) and the mediodorsal nucleus of thalamus (MDT) in the mouse amygdala-kindling models during the development of epileptic seizures. The synchronization of LFPs was quantified between BLA, CA1 and MDT using phase-locking value (PLV). During amygdala kindling, behavioral changes (from stage 0 to stage 5) of mice were accompanied by after-discharges (ADs) of similar waveforms appearing almost simultaneously in CA1, MDT, as well as BLA. AD durations were positively related to the intensity of seizures. During seizures at stages 1~2, PLVs remained relatively low and increased dramatically shortly after the termination of the seizures; by contrast, for stages 3~5, PLVs remained a relatively low level during the initial period but increased dramatically before the seizure termination. And in the theta band, the degree of PLV enhancement was positively associated with seizure intensity. The results suggested that during epileptogenesis, the functional regions were kept desynchronized rather than hyper-synchronized during either the initial or the entire period of the seizures; so different dynamic patterns of phase synchronization may be involved in different periods of the epileptogenesis, and this might also reflect that during seizures at different stages, the mechanisms underlying the dynamics of phase synchronization were different.  相似文献   

17.
Many progressive neurologic diseases in humans, such as epilepsy, require pre-clinical animal models that slowly develop the disease in order to test interventions at various stages of the disease process. These animal models are particularly difficult to implement in immature rodents, a classic model organism for laboratory study of these disorders. Recording continuous EEG in young animal models of seizures and other neurological disorders presents a technical challenge due to the small physical size of young rodents and their dependence on the dam prior to weaning. Therefore, there is not only a clear need for improving pre-clinical research that will better identify those therapies suitable for translation to the clinic but also a need for new devices capable of recording continuous EEG in immature rodents. Here, we describe the technology behind and demonstrate the use of a novel miniature telemetry system, specifically engineered for use in immature rats or mice, which is also effective for use in adult animals.  相似文献   

18.
Ischemia and seizures are common diseases that result in neuronal death. To-date, there are no available treatments to block or reverse neuronal death pathways in patients who suffer from these diseases. All drugs that have been shown to be neuroprotective in animal models have failed in human trials. Therefore, the potential of preventative strategies for therapy is increasingly explored. Experimental studies have demonstrated that a brief cerebral ischemic insult, that is not harmful by itself, results in a temporary protective adaptation in the brain against a subsequent ischemic episode that would otherwise be lethal. This process, termed ischemic preconditioning, has been confirmed in different models of cerebral ischemia. A similar phenomenon observed after a mild epileptic insult conferred a transitory tolerance to a subsequent epileptic episode. This process is termed epileptic tolerance. Other stresses, like hyperthermia or spreading depression, also enhanced brain resistance to detrimental effects of ischemic or epileptic injury. Recently, a cross tolerance between ischemia and epilepsy has been reported. Also, some retrospective studies in humans suggest that endogenous ischemic preconditioning exists in the brain. Altogether these insights of brain tolerance point to the future discovery of potentially useful targets for acute neuroprotection as well as preventive therapy.  相似文献   

19.
Kindling was induced in male wistar rats (280-320 g) by daily ip injections of PTZ in subthreshold doses (30 mg/kg). Repeated administration of PTZ to animals resulted in developing of enhanced seizures and also enhanced seizure susceptibility which could be sustained for a long time (6 months) after last seizure paroxysm. The lesioned hippocampus retarded the manifestation of PTZ kindling, where as lesioned caudate nuclei increased the seizure kindling development. Results also revealed hippocampus as a determinant structure in PTZ kindling formation, which stabilize the epileptic manifestations and make them chronic, at the same time caudate nuclei retarded the epileptic seizures stabilization. This role may be only antiepileptic, and not anti-kindling as is known for caudate nuclei.  相似文献   

20.
癫痫病人脑电信号的奇异谱   总被引:9,自引:1,他引:8  
癫痫是一种常见的神经系统疾患,其唯一客观证据为脑电图的癫痫样发放。在癫痫发作间期,仅有偶发的很难辨别的癫痫样放电,为了正确诊断癫痫病,往往需要医生长时间监测病人的脑电信号,在对脑电信号进行相空间重构,进而对其进行奇异系统分析,发现癫痫病人无论在癫痫发作前、发作中、发作后,其脑电信号的奇异谱曲线不存在噪声平台,明显区别于正常人。是否可以认为脑电信号的奇异谱正代表着大脑的一种基本状态,癫痫患者在未发作时,大脑的基本状态已经处于异常。无论如休,奇异系统分析方法使得可以利用很短的一段脑电数据诊断癫痫。无疑为癫痫病人的临床诊断提供了一条简单、有效的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号