首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.  相似文献   

2.
Protein disulfide isomerases (PDIs) are thought to aid protein folding and assembly by catalyzing formation and shuffling of cysteine disulfide bonds in the endoplasmic reticulum (ER). Currently, increasing evidence suggests PDIs play an important role in host cell invasion and they are relevant targets for the host immune response. However the roles of specific PDIs in teleosts are little known. Here, we characterized the Protein disulfide isomerase family A, member 6 (PDIA6) from channel catfish, Ictalurus punctatus (named as ccPDIA6). The catfish ccPDIA6 gene was homologous to those of other vertebrate species with 13 exons and 12 introns. The consensus full-length ccPDIA6 cDNA contained an ORF of 1320 bp encoding a putative protein of 439 amino acids. It had a 19 amino acid signal peptide and two active thioredoxin-like domains. Sequence of phylogenic analysis and multiple alignments showed that ccPDIA6 was conserved throughout vertebrate evolution. Southern blot analysis suggested the presence of one copy of the ccPDIA6 gene in the catfish genome. Tissue distribution shows that ccPDIA6 was expressed in all examined tissues at the mRNA level. When using the aquatic zoonotic pathogens such as Edwardsiella tara, Streptococcus iniae, and channel catfish reovirus (CCRV) to challenge channel catfish, ccPDIA6 expression was significant changed in immune-related tissues such as head kidney, intestine, liver and spleen. The results suggested that ccPDIA6 might play an important role in the immunity of channel catfish. This is the first report that the PDI gene may be involved in fish host defense against pathogen infection.  相似文献   

3.
Protein disulfide isomerases (PDIs) are eukaryotic oxidoreductases essential for oxidative protein folding. Their diversity in photosynthetic organisms was assessed by analyzing 24 sequenced genomes belonging to algal, lycophyte, bryophyte and angiosperm phyla. This phylogenetic analysis led to an updated classification into 9 classes (PDI-A to -F, -L, -M and -S) which differed by the number of Trx domains and the presence of additional domains (D, COPII, J and ARMET). From an evolutionary perspective, the distribution and protein architecture of PDIs differ considerably between algae and terrestrial plants, 5 PDI classes are common whereas 1 is specific to terrestrial plants and 3 to algae. Some algal PDI-Fs possess selenocysteine residues. The PDI family is larger in mammals (19 members in human) than in land plants (around 10 members) and Saccharomyces cerevisiae (5 members). However, PDIs from photosynthetic organisms display an important structural and functional diversity considering their association to specific protein domains.  相似文献   

4.
Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) are ER foldases identified as possible ALS biomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized four ALS‐linked mutations recently identified in two major PDI genes, PDIA1 and PDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of these PDI variants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutant PDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of these PDI mutants. Finally, targeting ERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifies ER proteostasis imbalance as a risk factor for ALS, driving initial stages of the disease.  相似文献   

5.
《Trends in parasitology》2023,39(8):622-625
Protein disulfide isomerases (PDIs) ensure that specific substrate proteins are correctly folded. PDI activity plays an essential role in malaria transmission. Here we provide an overview of the role of PDIs in malaria-causing Plasmodium parasites and outline why PDI inhibition could be a novel way to treat malaria and prevent transmission.  相似文献   

6.
蛋白质二硫键异构酶(PDI)对蛋白的折叠和二硫键的形成起重要的作用.此外,PDI还执行许多其他的生物功能,是1个多功能酶. 本文通过研究玉米中1个PDI基因的特征和表达,探讨它的功能作用. 玉米中的PDI基因编码513个氨基酸.同源分析表明,该基因和水稻、小麦的PDI基因聚为一类,有很高的蛋白相似性.蛋白结构分析表明,该基因具有明显的PDI基因的结构特点,包括硫氧还蛋白活性位点(CGHC)以及内质网定位信号(KDEL).Northern杂交分析显示,该基因在发育种子的表达量高,同时受干旱、冷、ABA和盐等逆境胁迫诱导表达.PDI与GFP融合表达研究基因的亚细胞定位,表明该基因定位在除细胞膜外的细胞质和细胞器上.  相似文献   

7.
8.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

9.
Protein disulfide isomerases (PDIs) catalyse the formation of native disulfide bonds in protein folding pathways. The key steps involve disulfide formation and isomerization in compact folding intermediates. The high-resolution structures of the a and b domains of PDI are now known, and the overall domain architecture of PDI and its homologues can be inferred. The isolated a and a′ domains of PDI are good catalysts of simple thiol–disulfide interchange reactions but require additional domains to be effective as catalysts of the rate-limiting disulfide isomerizations in protein folding pathways. The b′ domain of PDI has a specific binding site for peptides and its binding properties differ in specificity between members of the PDI family. A model of PDI function can be deduced in which the domains function synergically: the b′ domain binds unstructured regions of polypeptide, while the a and a′ domains catalyse the chemical isomerization steps.  相似文献   

10.
A phylogenetic analysis of protein disulfide isomerase (PDI) domain evolution was performed with the inclusion of recently reported PDIs from the amitochondriate protist Giardia lamblia, yeast PDIs that contain a single thioredoxin-like domain, and PDIs from a diverse selection of protists. We additionally report and include two new giardial PDIs, each with a single thioredoxin-like domain. Inclusion of protist PDIs in our analyses revealed that the evolutionary history of the endoplasmic reticulum may not be simple. Phylogenetic analyses support common ancestry of all eukaryotic PDIs from a thioredoxin ancestor and independent duplications of thioredoxin-like domains within PDIs throughout eukaryote evolution. This was particularly evident for Acanthamoeba PDI, Dictyostelium PDI, and mammalian erp5 domains. In contrast, gene duplication, instead of domain duplication, produces PDI diversity in G. lamblia. Based on our results and the known diversity of PDIs, we present a new hypothesis that the five single-domain PDIs of G. lamblia may reflect an ancestral mechanism of protein folding in the eukaryotic endoplasmic reticulum. The PDI complement of G. lamblia and yeast suggests that a combination of PDIs may be used as a redox chain analogous to that known for bacterial Dsb proteins.  相似文献   

11.
Protein disulfide isomerase (PDI) catalyzes formation and isomerization of disulfide bridges and has chaperone activity. Currently, increasing evidence suggests the significance of PDI in immune and stress responses. To clarify the role of PDIs in the innate immunity of shrimp, two PDI genes were isolated and identified from Fenneropenaeus chinensis (fleshy prawn). FcPDI1 is 1878bp in length and encodes a protein of 383 amino acids. It has 18-amino acid signal peptide, 3 thioredoxin domains with 3 active sites of CGHC, and KEDL retention signal at its C-end. FcPDI1 is an atypical PDI. The open reading frame of FcPDI2 encodes a 497-amino acid protein and shows the classical domain organization a-b-b'-a'. Phylogenic analysis and multiple alignments show that FcPDI1 is similar to PDI that contains 3 thioredoxin domains from other species including invertebrates and vertebrates. FcPDI2, LvPDI, and insect PDIs are grouped into one cluster and are similar to PDIs having a-b-b'-a' domain organization. Tissue distribution shows that FcPDI1 and FcPDI2 were expressed in all detected tissues at the mRNA level. Changes in FcPDI1 and FcPDI2 expression at the mRNA level in hemocytes, hepatopancreas, gills, and ovaries upon Vibrio or white spot syndrome virus challenge were also analyzed. The results suggest that FcPDI1 and FcPDI2 might have roles in the innate immunity of shrimp. FcPDI1 was also successfully expressed in Escherichia coli and the recombinant FcPDI1 showed insulin reductase activity. Results show that FcPDI might play an important role in the innate immunity of shrimp.  相似文献   

12.
The human PDI family: versatility packed into a single fold   总被引:2,自引:0,他引:2  
The enzymes of the protein disulfide isomerase (PDI) family are thiol-disulfide oxidoreductases of the endoplasmic reticulum (ER). They contain a CXXC active-site sequence where the two cysteines catalyze the exchange of a disulfide bond with or within substrates. The primary function of the PDIs in promoting oxidative protein folding in the ER has been extended in recent years to include roles in other processes such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, antigen presentation and virus entry. Some of these functions are performed by non-catalytic members of the family that lack the active-site cysteines. Regardless of their function, all human PDIs contain at least one domain of approximately 100 amino acid residues with structural homology to thioredoxin. As we learn more about the individual proteins of the family, a complex picture is emerging that emphasizes as much their differences as their similarities, and underlines the versatility of the thioredoxin fold. Here, we primarily explore the diversity of cellular functions described for the human PDIs.  相似文献   

13.
Protein disulfide isomerases (PDIs) are responsible for catalyzing the proper oxidation and isomerization of disulfide bonds of newly synthesized proteins in the endoplasmic reticulum (ER). Here, it is shown that human PDI (PDIA1) dimerizes in vivo and proposed that the dimerization of PDI has physiological relevance by autoregulating its activity. The crystal structure of the dimeric form of noncatalytic bb′ domains of human PDIA1 determined to 2.3 Å resolution revealed that the formation of dimers occludes the substrate binding site and may function as a mechanism to regulate PDI activity in the ER.  相似文献   

14.
Protein disulfide isomerases (PDIs) are molecular chaperones that contain thioredoxin (TRX) domains and aid in the formation of proper disulfide bonds during protein folding. To identify plant PDI-like (PDIL) proteins, a genome-wide search of Arabidopsis (Arabidopsis thaliana) was carried out to produce a comprehensive list of 104 genes encoding proteins with TRX domains. Phylogenetic analysis was conducted for these sequences using Bayesian and maximum-likelihood methods. The resulting phylogenetic tree showed that evolutionary relationships of TRX domains alone were correlated with conserved enzymatic activities. From this tree, we identified a set of 22 PDIL proteins that constitute a well-supported clade containing orthologs of known PDIs. Using the Arabidopsis PDIL sequences in iterative BLAST searches of public and proprietary sequence databases, we further identified orthologous sets of 19 PDIL sequences in rice (Oryza sativa) and 22 PDIL sequences in maize (Zea mays), and resolved the PDIL phylogeny into 10 groups. Five groups (I-V) had two TRX domains and showed structural similarities to the PDIL proteins in other higher eukaryotes. The remaining five groups had a single TRX domain. Two of these (quiescin-sulfhydryl oxidase-like and adenosine 5'-phosphosulfate reductase-like) had putative nonisomerase enzymatic activities encoded by an additional domain. Two others (VI and VIII) resembled small single-domain PDIs from Giardia lamblia, a basal eukaryote, and from yeast. Mining of maize expressed sequence tag and RNA-profiling databases indicated that members of all of the single-domain PDIL groups were expressed throughout the plant. The group VI maize PDIL ZmPDIL5-1 accumulated during endoplasmic reticulum stress but was not found within the intracellular membrane fractions and may represent a new member of the molecular chaperone complement in the cell.  相似文献   

15.
Proteins of the PDI family: unpredicted non-ER locations and functions   总被引:15,自引:0,他引:15  
Protein disulfide isomerases (PDIs) constitute a family of structurally related enzymes which catalyze disulfide bonds formation, reduction, or isomerization of newly synthesized proteins in the lumen of the endoplasmic reticulum (ER). They act also as chaperones, and are, therefore, part of a quality-control system for the correct folding of the proteins in the same subcellular compartment. While their functions in the ER have been thoroughly studied, much less is known about their roles in non-ER locations, where, however, they have been shown to be involved in important biological processes. At least three proteins of this family from higher vertebrates have been found in unusual locations (i.e., the cell surface, the extracellular space, the cytosol, and the nucleus), reached through an export mechanism which has not yet been understood. In some cases their function in the non-ER location is clearly related to their redox properties, but in most cases their mechanism of action has still to be disclosed, although their propensity to associate with other proteins or even with DNA might be the main factor responsible for their activities.  相似文献   

16.
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.  相似文献   

17.
A cDNA that encodes protein disulfide isomerase was isolated from Bombyx mori (bPDI), in which an open reading frame of 494 amino acids contained two PDI-typical thioredoxin active sites of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal. The bPDI protein shared less than 55% of the amino acid sequence homology with other reported PDIs. bPDI is most genetically similar to the D. melanogaster PDI. The most serious evolutional diversity was observed between the metazoa and nematoda through PDI evolutional processing. Although bPDI shows a relatively low amino acid homology with other PDIs, in which both sites of the two thioredoxin active sites and the endoplasmic reticulum (ER) retention signal are completely conserved, it was successfully recognized by anti-rat PDI antibodies. This suggests that bPDI may have the activity of a protein isomerase and a chaperone.  相似文献   

18.
For most of the proteins synthesized in the endoplasmic reticulum (ER), disulfide bond formation accompanies protein folding in a process called oxidative folding. Oxidative folding is catalyzed by a number of enzymes, including the family of protein disulfide isomerases (PDIs), as well as other proteins that supply oxidizing equivalents to PDI family proteins, like ER oxidoreductin 1 (Ero1). Oxidative protein folding in the ER is a basic vital function, and understanding its molecular mechanism is critical for the application of plants as protein production tools. Here, I review the recent research and progress related to the enzymes involved in oxidative folding in the plant ER. Firstly, nine groups of plant PDI family proteins are introduced. Next, the enzymatic properties of plant Ero1 are described. Finally, the cooperative folding by multiple PDI family proteins and Ero1 is described.  相似文献   

19.
ER-associated degradation (ERAD) rids the early secretory pathway of misfolded or misprocessed proteins. Some members of the protein disulfide isomerase (PDI) family appear to facilitate ERAD substrate selection and retrotranslocation, but a thorough characterization of PDIs during the degradation of diverse substrates has not been undertaken, in part because there are 20 PDI family members in mammals. PDIs can also exhibit disulfide redox, isomerization, and/or chaperone activity, but which of these activities is required for the ERAD of different substrate classes is unknown. We therefore examined the fates of unique substrates in yeast, which expresses five PDIs. Through the use of a yeast expression system for apolipoprotein B (ApoB), which is disulfide rich, we discovered that Pdi1 interacts with ApoB and facilitates degradation through its chaperone activity. In contrast, Pdi1's redox activity was required for the ERAD of CPY* (a misfolded version of carboxypeptidase Y that has five disulfide bonds). The ERAD of another substrate, the alpha subunit of the epithelial sodium channel, was Pdi1 independent. Distinct effects of mammalian PDI homologues on ApoB degradation were then observed in hepatic cells. These data indicate that PDIs contribute to the ERAD of proteins through different mechanisms and that PDI diversity is critical to recognize the spectrum of potential ERAD substrates.  相似文献   

20.
Protein misfolding and aggregation are common to most neurodegenerative diseases, suggesting that abnormalities of protein homeostasis contribute to pathogenesis. Research implicates at least two components of cellular protein quality control in disease: molecular chaperones and the ubiquitin-proteasome pathway (UPP). Although evidence is more compelling for chaperone involvement, recent cell-based and genetic studies suggest that perturbations in the UPP also contribute to neurodegenerative disease processes. UPP involvement in disease seems even more probable when the UPP is viewed not simply as an isolated degradation machine but rather as a complex cascade linked both to other ubiquitin-dependent processes and to chaperone systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号