首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
Differential induction of enzymes involved in anaerobic metabolism of aromatic substrates was studied in the denitrifying bacterium Thauera aromatica. This metabolism is divided into (1) peripheral reactions transforming the aromatic growth substrates to the common intermediate benzoyl-CoA, (2) the central benzoyl-CoA pathway comprising ring-reduction of benzoyl-CoA and subsequent β-oxidation to 3-hydroxypimelyl-CoA, and (3) the pathway of β-oxidation of 3-hydroxypimelyl-CoA to three acetyl-CoA and CO2. Regulation was studied by three methods. 1. Determination of protein patterns of cells grown on different substrates. This revealed several strongly substrate-induced polypeptides that were missing in cells grown on benzoate or other intermediates of the respective metabolic pathways. 2. Measurement of activities of known enzymes involved in this metabolism in cells grown on different substrates. The enzyme pattern found is consistent with the regulatory pattern deduced from simultaneous adaptation of cells to utilisation of other aromatic substrates. 3. Immunological detection of catabolic enzymes in cells grown on different substrates. Benzoate-CoA ligase and 4-hydroxybenzoate-CoA ligase were detected only in cells yielding the respective enzyme activity. However, presence of the subunits of benzoyl-CoA reductase and 4-hydroxybenzoyl-CoA reductase was also recorded in some cell batches lacking enzyme activity. This possibly indicates an additional level of regulation on protein level for these two reductases. Received: 22 December 1997 / Accepted: 12 May 1998  相似文献   

3.
Kinetic and regulatory properties of NADP-isocitrate dehydrogenase (NADP-IDH) and aspartate aminotransferase (AsAT) responsible for 2-oxoglutarate metabolism in the cytoplasm and mitochondria of rat liver were studied. Based on the subcellular location of these enzymes and their kinetic parameters (Km, Ksi) obtained with highly purified enzyme preparations, it is suggested that synthesis of 2-oxoglutarate should be mainly determined by cytoplasmic NADP-IDH (86% of the total activity in the cell), whereas its utilization should depend on cytoplasmic AsAT (78% of the total activity). AsAT from the rat liver was specified by substrate inhibition and also by changes in the enzyme affinity for the substrates under the influence of some intermediates of the tricarboxylic acid cycle: isocitrate, succinate, fumarate, and citrate. Key intermediates of nitrogen metabolism (glutamate, glutamine, and aspartate) are involved in the regulation of NADP-IDH and AsAT. These enzymes are regulated oppositely, and the catalytic activity of one enzyme can be stimulated concurrently with a decrease in the activity of the other. Obviously, carbon and nitrogen metabolism in the rat liver can be controlled through redistribution of 2-oxoglutarate between different metabolic processes via regulatory mechanisms influencing differently located forms of NADP-IDH and AsAT.  相似文献   

4.
One observes regulation at every biological level. Organisms, cells, and biochemical processes operate efficiently, normally wasting neither material nor energy, and adjusting their functions to external influences. Nature evidently has evolved mechanisms specifically dedicated to regulation at many levels. What is the molecular basis of this control? In the 1950s these molecular control mechanisms began to be explored seriously. The discoveries of feedback inhibition of enzyme activity were important because they gave an initial example of how regulation is achieved at the molecular level. We showed that certain enzymes are composed of two parts, one for catalysis and another distinct part present only to regulate this catalysis. Catalytic activity can be either stimulated or inhibited when a small molecule in the environment combines with the enzyme's regulatory site. In particular, a final product of a metabolic pathway generates a feedback loop which automatically limits its own excessive production, by combining with the regulatory site of an early enzyme in that pathway. Later studies showed that catalytic and regulatory structures of some enzymes could be separated physically. The discovery of regulatory sites and their interaction with molecules unrelated to their substrates was the basis for the generalized allosteric concept. This concept extends the regulatory site idea to a wide variety of processes such as control of gene expression, hormone action, and cellular growth.  相似文献   

5.
6.
Specific enzymes play key roles in many pathophysiological processes and therefore are targets for therapeutic strategies. The activity of most enzymes is largely determined by many factors at the post-translational level. Therefore, it is essential to study the activity of target enzymes in living cells and tissues in a quantitative manner in relation to pathophysiological processes to understand its relevance and the potential impact of its targeting by drugs. Proteases, in particular, are crucial in every aspect of life and death of an organism and are therefore important targets. Enzyme activity in living cells can be studied with various tools. These can be endogenous fluorescent metabolites or synthetic chromogenic or fluorogenic substrates. The use of endogenous metabolites is rather limited and nonspecific because they are involved in many biological processes, but novel chromogenic and fluorogenic substrates have been developed to monitor activity of enzymes, and particularly proteases, in living cells and tissues. This review discusses these substrates and the methods in which they are applied, as well as their advantages and disadvantages for metabolic mapping in living cells.  相似文献   

7.
8.
Increasing the flux through central carbon metabolism is difficult because of rigidity in regulatory structures, at both the genetic and the enzymatic levels. Here we describe metabolic engineering of a regulatory network to obtain a balanced increase in the activity of all the enzymes in the pathway, and ultimately, increasing metabolic flux through the pathway of interest. By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway by eliminating three known negative regulators of the GAL system: Gal6, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux.  相似文献   

9.
Methylotrophic bacteria are capable of growth using reduced one-carbon (C1) compounds like methanol or methylamine as free energy sources. Paracoccus denitrificans, which is a facultative methylotrophic organism, switches to this type of autotrophic metabolism only when it experiences a shortage of available heterotrophic free energy sources. Since the oxidation of C1 substrates is energetically less favourable than that of the heterotrophic ones, a global regulatory circuit ensures that the enzymes involved in methylotrophic growth are repressed during heterotrophic growth. Once the decision is made to switch to methylotrophic growth, additional regulatory proteins ensure the fine-tuned expression of the participating enzymes such that the steady-state concentration of formaldehyde, the oxidation product of C1 substrates, is kept below cytotoxic levels.  相似文献   

10.
11.
12.
The post-translational modification of proteins by covalent attachment of ubiquitin occurs in all eukaryotes by a multi-step process. A family of E2 or ubiquitin conjugating (UBC) enzymes catalyse one step of this process and these have been implicated in several diverse regulatory functions. We report here the sequence of a gene encoded by African swine fever virus (ASFV) which has high homology with UBC enzymes. This ASFV encoded enzyme has UBC activity when expressed in Escherichia coli since it forms thiolester bonds with [125I]ubiquitin in the presence of purified ubiquitin activating enzyme (E1) and ATP, and subsequently transfers [125I]ubiquitin to specific protein substrates. These substrates include histones, ubiquitin and the UBC enzyme itself. The ASFV encoded UBC enzyme is similar in structure and enzyme activity to the yeast ubiquitin conjugating enzymes UBC2 and UBC3. This is the first report of a virus encoding a functionally active UBC enzyme and provides an example of the exploitation of host regulatory mechanisms by viruses.  相似文献   

13.
Deubiquitinating enzymes: their diversity and emerging roles   总被引:20,自引:0,他引:20  
A growing number of important regulatory proteins within cells are modified by conjugation of ubiquitin, a well-conserved 76-amino-acid polypeptide. The ubiquitinated proteins are targeted to proteasome for degradation or alternative metabolic fates, such as triggering of plasma membrane endocytosis and trafficking to vacuoles or lysosomes. Deubiquitination, reversal of this modification, is being recognized as an important regulatory step. Deubiquitinating enzymes are cysteine proteases that specifically cleave off ubiquitin from ubiquitin-conjugated protein substrates as well as from its precursor proteins. Genome sequencing projects have identified more than 90 deubiquitinating enzymes, making them the largest family of enzymes in the ubiquitin system. This review will concentrate on recent important findings as well as new insights into the diversity and emerging roles of deubiquitinating enzymes in the ubiquitin-dependent pathway.  相似文献   

14.
The activities of selected enzymes in the branched metabolic pathway to succinate or lactate were determined in cytosol and mitochondrial fractions. The enzymes of lowest activity in the cytosol, and thus possibly regulatory, are phosphofructokinase and pyruvate kinase. Malic enzyme activity could scarcely be detected in either compartment; phosphoenolpyruvate carboxykinase and malate dehydrogenase occur in both. The end products of metabolism are succinate and lactate; under anaerobic conditions lactate production increases whereas succinate production shows a small decrease. The presence of glucose in the medium does not influence the change, but causes an increase in total endproduct accumulation. Levels of metabolic intermediates in worms incubated aerobically and anaerobically are presented, and ‘cross-over’ plots and calculations of apparent equilibrium constants identify hexokinase, phosphofructokinase and pyruvate kinase as regulatory. Under aerobic conditions a large increase in the size of the malate pool is observed suggesting that the depression of lactate production is produced by its inhibitory effect on pyruvate kinase. Adenine nucleotide levels are maintained whether or not the worm is incubated under anaerobic conditions.  相似文献   

15.
16.
Allosteric enzymes are part of a unique class of enzymes which regulate metabolic pathways. On the molecular level, allosteric regulation is the result of interactions between discrete binding sites on the enzyme. In order to accommodate these multiple binding sites, allosteric enzymes have evolved with oligomeric quaternary structures. However, only a few oligomeric enzymes are known to have regulatory interactions between binding sites. Is regulatory activity an inherent property of oligomeric enzymes? The trimeric Bacillus subtilis aspartate transcarbamoylase catalyzes the first committed step of the pyrimidine biosynthetic pathway and is not known to be a regulatory enzyme. When an alanine residue is substituted for the active-site residue Arg-99 by site-specific mutagenesis, the regulatory activity of homotropic substrate cooperativity (Hill coefficient of 1.5) is observed in the resulting mutant enzyme. These results suggest that homotropic regulation may have evolved by a relatively small number of mutations to an oligomeric enzyme.  相似文献   

17.
Selection, adaptation, and bacterial operons   总被引:6,自引:0,他引:6  
B G Hall 《Génome》1989,31(1):265-271
Bacteria are especially useful as systems to study the molecular basis of adaptive evolution. Selection for novel metabolic capabilities has allowed us to study the evolutionary potential of organisms and has shown that there are three major "strategies" for the evolution of new metabolic functions. (i) Regulatory mutations may allow a gene to be expressed under unusual conditions. If the product of that gene is already active toward a novel resource, then a regulatory mutation alone may confer a new metabolic capability. (ii) Structural gene mutations may alter the catalytic properties of enzymes so that they can act on novel substrates. These structural gene mutations may dramatically improve catalytic capabilities, and in some cases they can confer entirely new capabilities upon enzymes. In most cases both regulatory and structural gene mutations are required for the effective evolution of new metabolic functions. (iii) Operons that are normally silent, or cryptic, may be activated by either point mutations or by the action of mobile genetic elements. When activated, these operons can provide entirely new pathways for the metabolism of novel resources. Selection can also play a role in modulating the probability that a particular adaptive mutation will occur. In this paper I present evidence that a specific adaptive mutation, reversion of the metB1 mutation, occurs 60 to 80 times more frequently during prolonged selection on plates under conditions where the members of the population are not growing than it does in growing cells under nonselective conditions. This selective condition, methionine starvation, does not increase the frequency of other mutations unrelated to methionine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
M Szczesiul  D E Wampler 《Biochemistry》1976,15(10):2236-2244
Six enzymes involved in the conversion of aspartate to threonine have been extracted from Escherichia coli and separated from each other. Two of these enzymes, aspartokinase and homoserine dehydrogenase, have also been partially purified from Rhodopseudomonas spheroides. In an attempt to determine whether small changes in the kinetic properties of individual enzymes are important to the regulation of metabolic flux through a coupled reaction system, the partially purified enzymes were recombined in a variety of ways under reaction conditions designed to resemble the in vivo situation. These conditions include: use of an entire metabolic system rather than a single reaction; high enzyme concentrations at the same relative concentrations as found in the cell; and low, steady-state concentrations of substrates and products. Metabolic flux was followed spectrophotometrically and the concentrations of aspartic semialdehyde, hemoserine, O-phosphohomoserine, and threonine were measured. The results indicate that the threonine concentration is of major importance in regulating metabolic flux by inhibiting aspartokinase, the first reaction in threonine in the pathway. When threonine-insensitive aspartokinases were used, concentrations reached higher levels and the rate of NADPH oxidation remained higher. The fact that neither aspartic semialdehyde nor homoserine accumulated as the threonine concentration increased and the lack of correlation between changes in metabolic flux and ADP/ATP or NADPH/NADP ratios indicate that more subtle forms of metabolic regulation, such as "reverse cascade", secondary feedback sites, or "energy charge", are of little regulatory importance in this isolated, metabolic system. The results also emphasize the need for caution in projecting in vivo control mechanisms from in vitro experiments.  相似文献   

19.
20.
The Leishmania guanosine 5′‐monophosphate reductase (GMPR) and inosine 5′‐monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine‐β‐synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH‐dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10‐fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号