共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinesin-8 family of microtubule motors plays?a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization. 相似文献
2.
Rania S. Rizk Katherine A. DiScipio Kathleen G. Proudfoot Mohan L. Gupta Jr. 《The Journal of cell biology》2014,204(6):965-975
Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation. 相似文献
3.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2581-2588
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. The yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not beenreported. We investigated Kip3's role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths. 相似文献
4.
Megan M Wargacki Jessica C Tay Eric G Muller Charles L Asbury Trisha N Davis 《Cell cycle (Georgetown, Tex.)》2010,9(13):2581-2588
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. the yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not been reported. We investigated Kip3''s role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.Key words: Cin8, cluster, GFP-tubulin, kinesin-5, kinesin-8, kinetochore, Kip3, metaphase, microtubule, mitosis, spindle 相似文献
5.
The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule-cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase--a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members. 相似文献
6.
《Biophysical journal》2020,118(8):1958-1967
Microtubules are highly dynamic filaments with dramatic structural rearrangements and length changes during the cell cycle. An accurate control of the microtubule length is essential for many cellular processes, in particular during cell division. Motor proteins from the kinesin-8 family depolymerize microtubules by interacting with their ends in a collective and length-dependent manner. However, it is still unclear how kinesin-8 depolymerizes microtubules. Here, we tracked the microtubule end-binding activity of yeast kinesin-8, Kip3, under varying loads and nucleotide conditions using high-precision optical tweezers. We found that single Kip3 motors spent up to 200 s at the microtubule end and were not stationary there but took several 8-nm forward and backward steps that were suppressed by loads. Interestingly, increased loads, similar to increased motor concentrations, also exponentially decreased the motors’ residence time at the microtubule end. On the microtubule lattice, loads also exponentially decreased the run length and time. However, for the same load, lattice run times were significantly longer compared to end residence times, suggesting the presence of a distinct force-dependent detachment mechanism at the microtubule end. The force dependence of the end residence time enabled us to estimate what force must act on a single motor to achieve the microtubule depolymerization speed of a motor ensemble. This force is higher than the stall force of a single Kip3 motor, supporting a collective force-dependent depolymerization mechanism that unifies the so-called “bump-off” and “switching” models. Understanding the mechanics of kinesin-8’s microtubule end activity will provide important insights into cell division with implications for cancer research. 相似文献
7.
The kinesin-3 family (KIF) is one of the largest among the kinesin superfamily and an important driver of a variety of cellular transport events. Whereas all kinesins contain the highly conserved kinesin motor domain, different families have evolved unique motor features that enable different mechanical and functional outputs. A defining feature of kinesin-3 motors is the presence of a positively charged insert, the K-loop, in loop 12 of their motor domains. However, the mechanical and functional output of the K-loop with respect to processive motility of dimeric kinesin-3 motors is unknown. We find that, surprisingly, the K-loop plays no role in generating the superprocessive motion of dimeric kinesin-3 motors (KIF1, KIF13, and KIF16). Instead, we find that the K-loop provides kinesin-3 motors with a high microtubule affinity in the motor''s ADP-bound state, a state that for other kinesins binds only weakly to the microtubule surface. A high microtubule affinity results in a high landing rate of processive kinesin-3 motors on the microtubule surface. We propose that the family-specific K-loop contributes to efficient kinesin-3 cargo transport by enhancing the initial interaction of dimeric motors with the microtubule track. 相似文献
8.
Rank KC Chen CJ Cope J Porche K Hoenger A Gilbert SP Rayment I 《The Journal of cell biology》2012,197(7):957-970
Kinesin-14 motors generate microtubule minus-end-directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterodimer with either Vik1 or Cik1. Vik1 contains a motor homology domain that retains microtubule binding properties but lacks a nucleotide binding site. In this case, both heads are implicated in motility. Here, we show through structural determination of a C-terminal heterodimeric Kar3Vik1, electron microscopy, equilibrium binding, and motility that at the start of the cycle, Kar3Vik1 binds to or occludes two αβ-tubulin subunits on adjacent protofilaments. The cycle begins as Vik1 collides with the microtubule followed by Kar3 microtubule association and ADP release, thereby destabilizing the Vik1-microtubule interaction and positioning the motor for the start of the powerstroke. The results indicate that head-head communication is mediated through the adjoining coiled coil. 相似文献
9.
The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport
下载免费PDF全文

Intraflagellar transport (IFT) is a bidirectional process required for assembly and maintenance of cilia and flagella. Kinesin-2 is the anterograde IFT motor, and Dhc1b/Dhc2 drives retrograde IFT. To understand how either motor interacts with the IFT particle or how their activities might be coordinated, we characterized a ts mutation in the Chlamydomonas gene encoding KAP, the nonmotor subunit of Kinesin-2. The fla3-1 mutation is an amino acid substitution in a conserved C-terminal domain. fla3-1 strains assemble flagella at 21 degrees C, but cannot maintain them at 33 degrees C. Although the Kinesin-2 complex is present at both 21 and 33 degrees C, the fla3-1 Kinesin-2 complex is not efficiently targeted to or retained in the basal body region or flagella. Video-enhanced DIC microscopy of fla3-1 cells shows that the frequency of anterograde IFT particles is significantly reduced. Anterograde particles move at near wild-type velocities, but appear larger and pause more frequently in fla3-1. Transformation with an epitope-tagged KAP gene rescues all of the fla3-1 defects and results in preferential incorporation of tagged KAP complexes into flagella. KAP is therefore required for the localization of Kinesin-2 at the site of flagellar assembly and the efficient transport of anterograde IFT particles within flagella. 相似文献
10.
The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding 总被引:23,自引:0,他引:23
The RNA helicase/protease NS3 plays a central role in the RNA replication of hepatitis C virus (HCV), a cytoplasmic RNA virus that represents a major worldwide health problem. NS3 is, therefore, an important drug target in the effort to combat HCV. Most work has focused on the protease, rather than the helicase, activities of the enzyme. In order to further characterize NS3 helicase activity, we evaluated individual stages of duplex unwinding by NS3 alone and in complex with cofactor NS4A. Despite a putative replicative role in RNA unwinding, we found that NS3 alone is a surprisingly poor helicase on RNA, but that RNA activity is promoted by cofactor NS4A. In contrast, NS3 alone is a highly processive helicase on DNA. Phylogenetic analysis suggests that this robust DNA helicase activity is not vestigial and may have specifically evolved in HCV. Given that HCV has no replicative DNA intermediate, these findings suggest that NS3 may have the capacity to affect host DNA. 相似文献
11.
Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity 总被引:1,自引:1,他引:1
下载免费PDF全文

This paper shows that the protein-primed DNA polymerases encoded by bacteriophages Nf and GA-1, unlike other DNA polymerases, do not require unwinding or processivity factors for efficient synthesis of full-length terminal protein (TP)-DNA. Analysis of their polymerization activity shows that both DNA polymerases base their replication efficiency on a high processivity and on the capacity to couple polymerization to strand displacement. Both enzymes are endowed with a proofreading activity that acts coordinately with the polymerization one to edit polymerization errors. Additionally, Nf double-stranded DNA binding protein (DBP) greatly stimulated the in vitro formation of the TP-dAMP initiation complex by decreasing the Km value for dATP of the Nf DNA polymerase by >20-fold. Whereas Nf DNA polymerase, as the 29 enzyme, is able to use its homologous TP as well as DNA as primer, GA-1 DNA polymerase appears to have evolved to use its corresponding TP as the only primer of DNA synthesis. Such exceptional behaviour is discussed in the light of the recently solved structure of the DNA polymerase/TP complex of the related bacteriophage 29. 相似文献
12.
We previously showed that 3'-deoxy-cyclic ADP-carbocyclic-ribose (3'-deoxy-cADPcR, 4) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. From these results, we designed and synthesized other 3'-modified analogues of cADPcR having a substituent at the 8-position and found that this modification at the 8-position made them partial agonists. Among these compounds, 8-NH(2)-3'-deoxy-cADPcR (10) was identified as a potent partial agonist with an EC(50) value of 17 nM. 相似文献
13.
HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy 总被引:1,自引:0,他引:1
Mutations in HspB8, a member of the B group of heat shock proteins (Hsp), have been associated with human neuromuscular disorders. However, the exact function of HspB8 is not yet clear. We previously demonstrated that overexpression of HspB8 in cultured cells prevents the accumulation of aggregation-prone proteins such as the polyglutamine protein Htt43Q. Here we report that HspB8 forms a stable complex with Bag3 in cells and that the formation of this complex is essential for the activity of HspB8. Bag3 overexpression resulted in the accelerated degradation of Htt43Q, whereas Bag3 knockdown prevented HspB8-induced Htt43Q degradation. Additionally, depleting Bag3 caused a reduction in the endogenous levels of LC3-II, a key molecule involved in macroautophagy, whereas overexpressing Bag3 or HspB8 stimulated the formation LC3-II. These results suggested that the HspB8-Bag3 complex might stimulate the degradation of Htt43Q by macroautophagy. This was confirmed by the observation that treatments with macroautophagy inhibitors significantly decreased HspB8- and Bag3-induced degradation of Htt43Q. We conclude that the HspB8 activity is intrinsically dependent on Bag3, a protein that may facilitate the disposal of doomed proteins by stimulating macroautophagy. 相似文献
14.
Disruption of astral microtubule contact with the cell cortex activates a Bub1, Bub3, and Mad3-dependent checkpoint in fission yeast
下载免费PDF全文

In animal and yeast cells, the mitotic spindle is aligned perpendicularly to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring. In fission yeast, spindle rotation is dependent upon the interaction of astral microtubules with the cortical actin cytoskeleton. In this article, we show that addition of Latrunculin A, which prevents spindle rotation, delays the separation of sister chromatids and anaphase promoting complex-mediated destruction of spindle-associated Securin and Cyclin B. Moreover, we find that whereas sister kinetochore pairs normally congress to the spindle midzone before anaphase onset, this congression is disrupted when astral microtubule contact with the actin cytoskeleton is disturbed. By analyzing the timing of kinetochore separation, we find that this anaphase delay requires the Bub3, Mad3, and Bub1 but not the Mad1 or Mad2 spindle assembly checkpoint proteins. In agreement with this, we find that Bub1 remains associated with kinetochores when spindles are mispositioned. These data indicate that, in fission yeast, astral microtubule contact with the medial cell cortex is monitored by a subset of spindle assembly checkpoint proteins. We propose that this checkpoint ensures spindles are properly oriented before anaphase takes place. 相似文献
15.
Marx A Müller J Mandelkow EM Woehlke G Bouchet-Marquis C Hoenger A Mandelkow E 《Biochemistry》2008,47(7):1848-1861
Neurospora crassa kinesin NcKin3 belongs to a unique fungal-specific subgroup of small Kinesin-3-related motor proteins. One of its functions appears to be the transport of mitochondria along microtubules. Here, we present the X-ray structure of a C-terminally truncated monomeric construct of NcKin3 comprising the motor domain and the neck linker, and a 3-D image reconstruction of this motor domain bound to microtubules, by cryoelectron microscopy. The protein contains Mg.ADP bound to the active site, yet the structure resembles an ATP-bound state. By comparison with structures of the Kinesin-3 motor Kif1A in different nucleotide states (Kikkawa, M. et al. (2001) Nature (London, U.K.) 411, 439-445), the NcKin3 structure corresponds to the AMPPCP complex of Kif1A rather than the AMPPNP complex. NcKin3-specific differences in the coordination of the nucleotide and asymmetric interactions between adjacent molecules in the crystal are discussed in the context of the unusual kinetics of the dimeric wild-type motor and the monomeric construct used for crystal structure analysis. The NcKin3 motor decorates microtubules at a stoichiometry of one head per alphabeta-tubulin heterodimer, thereby forming an axial periodicity of 8 nm. In spite of unusual extensions at the N-terminus and within flexible loops L2, L8a, and L12 (corresponding to the K-loop of monomeric kinesins), the microtubule binding geometry is similar to that of other members of the kinesin family. 相似文献
16.
Makarov AA Tsvetkov PO Villard C Esquieu D Pourroy B Fahy J Braguer D Peyrot V Lafitte D 《Biochemistry》2007,46(51):14899-14906
Vinca alkaloids vinblastine and vincristine and some of their derivatives such as vinorelbine are widely used in therapy of leukemia and several solid tumors. Their action is associated with alterations of the mitotic spindle functions that prevent the cell cycle progression and lead to mitotic block. A number of studies show that some Vinca alkaloids inhibit CaM-target interaction. The newest microtubule inhibitor, vinflunine (Javlor), currently in clinical trials, is remarkably more active than vinblastine against a number of tumors. Moreover, vinflunine is significantly less toxic than other Vinca alkaloids. The high antitumor activity of this molecule is not well understood since it binds to tubulin with an overall affinity several-fold lower than that of vinblastine or vincristine. In this study, we examined the interaction of Ca2+-CaM with vinflunine, vinblastine, and stable tubule only polypeptide (STOP) by using a combination of thermodynamic and mass spectrometric approaches. We characterized the influence of Vinca alkaloids on Ca2+-CaM-STOP complex formation. Our results revealed different binding modes to Ca2+-CaM for vinflunine and vinblastine, highlighting that adding fluorine atoms on the cleavamine moiety of the Vinca alkaloid molecule is critical for the localization of the drug on calmodulin. We demonstrate that vinflunine is a better inhibitor for STOP binding to calmodulin than vinblastine. We suggest that vinflunine action on calmodulin can have an effect on microtubule dynamics. These data may contribute to a better understanding of the superior antitumor efficiency and lower toxicity of vinflunine. 相似文献
17.
iota-Carrageenans are sulfated 1,3-alpha-1,4-beta-galactans from the cell walls of red algae, which auto-associate into crystalline fibers made of aggregates of double-stranded helices. iota-Carrageenases, which constitute family 82 of glycoside hydrolases, fold into a right-handed beta-helix. Here, the structure of Alteromonas fortis iota-carrageenase bound to iota-carrageenan fragments was solved at 2.0A resolution (PDB 1KTW). The enzyme holds a iota-carrageenan tetrasaccharide (subsites +1 to +4) and a disaccharide (subsites -3, -4), thus providing the first direct determination of a 3D structure of iota-carrageenan. Electrostatic interactions between basic protein residues and the sulfate substituents of the polysaccharide chain dominate iota-carrageenan recognition. Glu245 and Asp247 are the proton donor and the base catalyst, respectively. C-terminal domain A, which was highly flexible in the native enzyme structure, adopts a alpha/beta-fold, also found in DNA/RNA-binding domains. In the substrate-enzyme complex, this polyanion-binding module shifts toward the beta-helix groove, forming a tunnel. Thus, from an open conformation which allows for the initial endo-attack of iota-carrageenan chains, the enzyme switches to a closed-tunnel form, consistent with its highly processive character, as seen from the electron-microscopy analysis of the degradation of iota-carrageenan fibers. 相似文献
18.
19.
20.
Noda Y Okada Y Saito N Setou M Xu Y Zhang Z Hirokawa N 《The Journal of cell biology》2001,155(1):77-88
We have identified and characterized a COOH-terminal motor domain-type kinesin superfamily protein (KIFC), KIFC3, in the kidney. KIFC3 is a minus end-directed microtubule motor protein, therefore it accumulates in regions where minus ends of microtubules assemble. In polarized epithelial cells, KIFC3 is localized on membrane organelles immediately beneath the apical plasma membrane of renal tubular epithelial cells in vivo and polarized MDCK II cells in vitro. Flotation assay, coupled with detergent extraction, demonstrated that KIFC3 is associated with Triton X-100-insoluble membrane organelles, and that it overlaps with apically transported TGN-derived vesicles. This was confirmed by immunoprecipitation and by GST pulldown experiments showing the specific colocalization of KIFC3 and annexin XIIIb, a previously characterized membrane protein for apically transported vesicles (Lafont, F., S. Lecat, P. Verkade, and K. Simons. 1998. J. Cell Biol. 142:1413-1427). Furthermore, we proved that the apical transport of both influenza hemagglutinin and annexin XIIIb was partially inhibited or accelerated by overexpression of motor-domainless (dominant negative) or full-length KIFC3, respectively. Absence of cytoplasmic dynein on these annexin XIIIb-associated vesicles and distinct distribution of the two motors on the EM level verified the existence of KIFC3-driven transport in epithelial cells. 相似文献