首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p90 ribosomal S6 kinase 1 (RSK1) is a serine/threonine kinase that is activated by extracellular signal-related kinases 1/2 and phosphoinositide-dependent protein kinase 1 upon mitogen stimulation. Under basal conditions, RSK1 is located in the cytosol and upon stimulation, RSK1 translocates to the plasma membrane where it is fully activated. The ability of RSK1 to bind the adapter protein 14-3-3beta was investigated because RSK1 contains several putative 14-3-3-binding motifs. We demonstrate that RSK1 specifically and directly binds 14-3-3beta. This interaction was dependent on phosphorylation of serine 154 within the motif RLSKEV of RSK1. Binding of RSK1 to 14-3-3beta was maximal under basal conditions and decreased significantly upon mitogen stimulation. After 5 min of serum stimulation, a portion of 14-3-3beta and RSK1 translocated to the membrane fraction, and immunofluorescence studies demonstrated colocalization of RSK1 and 14-3-3beta at the plasma membrane in vivo. Incubation of recombinant RSK1 with 14-3-3beta decreased RSK1 kinase activity by approximately 50%. Mutation of RSK1 serine 154 increased both basal and serum-stimulated RSK activity. In addition, the epidermal growth factor response of RSK1S154A was enhanced compared with wild type RSK. The amount of RSK1S154A was significantly increased in the membrane fraction under basal conditions. Increased phosphorylation of two sites essential for RSK1 kinase activity (Ser(380) and Ser(363)) in RSK1S154A compared with RSK1 wild type, demonstrated that 14-3-3 interferes with RSK1 phosphorylation. These data suggest that 14-3-3beta binding negatively regulates RSK1 activity to maintain signal specificity and that association/dissociation of the 14-3-3beta-RSK1 complex is likely to be important for mitogen-mediated RSK1 activation.  相似文献   

2.
The breakpoint cluster region protein, BCR, has protein kinase activity that can auto- and trans-phosphorylate serine, threonine and tyrosine residues. BCR has been implicated in chronic myelogenous leukaemia as well as important signalling pathways, and as such its interaction with 14-3-3 is of major interest. 14-3-3tau and zeta isoforms have been shown previously to be phosphorylated in vitro and in vivo by BCR kinase on serine and threonine residue(s) but site(s) were not determined. Phosphorylation of 14-3-3 isoforms at distinct sites is an important mode of regulation that negatively affects interaction with Raf kinase and Bax, and potentially influences the dimerization of 14-3-3. In this study we have further characterized the BCR-14-3-3 interaction and have identified the site phosphorylated by BCR. We show here that BCR interacts with at least five isoforms of 14-3-3 in vivo and phosphorylates 14-3-3tau on Ser233 and to a lesser extent 14-3-3zeta on Thr233. We have previously shown that these two isoforms are also phosphorylated at this site by casein kinase 1, which, in contrast to BCR, preferentially phosphorylates 14-3-3zeta.  相似文献   

3.
4.
Trehalases are important highly conserved enzymes found in a wide variety of organisms and are responsible for the hydrolysis of trehalose that serves as a carbon and energy source as well as a universal stress protectant. Emerging evidence indicates that the enzymatic activity of the neutral trehalase Nth1 in yeast is enhanced by 14-3-3 protein binding in a phosphorylation-dependent manner through an unknown mechanism. In the present study, we investigated in detail the interaction between Saccharomyces cerevisiae Nth1 and 14-3-3 protein isoforms Bmh1 and Bmh2. We determined four residues that are phosphorylated by PKA (protein kinase A) in vitro within the disordered N-terminal segment of Nth1. Sedimentation analysis and enzyme kinetics measurements show that both yeast 14-3-3 isoforms form a stable complex with phosphorylated Nth1 and significantly enhance its enzymatic activity. The 14-3-3-dependent activation of Nth1 is significantly more potent compared with Ca2+-dependent activation. Limited proteolysis confirmed that the 14-3-3 proteins interact with the N-terminal segment of Nth1 where all phosphorylation sites are located. Site-directed mutagenesis in conjunction with the enzyme activity measurements in vitro and the activation studies of mutant forms in vivo suggest that Ser60 and Ser83 are sites primarily responsible for PKA-dependent and 14-3-3-mediated activation of Nth1.  相似文献   

5.
6.
14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax   总被引:19,自引:0,他引:19  
The Bcl-2 family of proteins comprises well characterized regulators of apoptosis, consisting of anti-apoptotic members and pro-apoptotic members. Pro-apoptotic members possessing BH1, BH2, and BH3 domains (such as Bax and Bak) act as a gateway for a variety of apoptotic signals. Bax is normally localized to the cytoplasm in an inactive form. In response to apoptotic stimuli, Bax translocates to the mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c, but it is still largely unknown how the mitochondrial translocation and pro-apoptotic activity of Bax is regulated. Here we report that cytoplasmic protein 14-3-3 theta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism, as well as through direct cleavage of 14-3-3 theta by caspases. Unlike Bad, the interaction with 14-3-3 theta is not dependent on the phosphorylation of Bax. In isolated mitochondria, we found that 14-3-3 theta inhibited the integration of Bax and Bax-induced cytochrome c release. Bax-induced apoptosis was inhibited by overexpression of either 14-3-3 theta or its mutant (which lacked the ability to bind to various phosphorylated targets but still bound to Bax), whereas overexpression of 14-3-3 theta was unable to inhibit apoptosis induced by a Bax mutant that did not bind to 14-3-3 theta. These findings indicate that 14-3-3 theta plays a crucial role in negatively regulating the activity of Bax.  相似文献   

7.
MAPKAP kinase 2 (MK2) is required for tumor necrosis factor synthesis. Tristetraprolin (TTP) binds to the 3'-untranslated region of tumor necrosis factor mRNA and regulates its fate. We identified in vitro and in vivo phosphorylation sites in TTP using nanoflow high pressure liquid chromatography microelectrospray ionization tandem mass spectrometry and novel methods for direct digestion of TTP bound to affinity matrices (GSH-beads or anti-Myc linked to magnetic beads). MK2Delta3B, activated in Escherichia coli by p38alpha, phosphorylates TTP in vitro at major sites Ser(52) and Ser(178) (>10-fold in abundance) as well as at several minor sites that were detected after enriching for phosphopeptides with immobilized metal affinity chromatography. MK2 phosphorylation of TTP creates a functional 14-3-3 binding site. In cells, TTP was phosphorylated at Ser(52), Ser(178), Thr(250), and Ser(316) and at SP sites in a cluster (Ser(80)/Ser(82)/Ser(85)). Anisomycin treatment of NIH 3T3 cells increased phosphorylation of Ser(52) and Ser(178). Overexpression of MK2 sufficed to increase phosphorylation of Ser(52) and Ser(178) but not Ser(80)/Ser(82)/Ser(85) or Thr(250). Thus, Ser(52) and Ser(178) are putative MK2 sites in vivo. Identified phosphosite(s) may be biologic switches controlling mRNA stability and translation.  相似文献   

8.
14-3-3 proteins block apoptosis and differentially regulate MAPK cascades   总被引:16,自引:0,他引:16  
14-3-3 family members are dimeric phosphoserine-binding proteins that participate in signal transduction and checkpoint control pathways. In this work, dominant-negative mutant forms of 14-3-3 were used to disrupt 14-3-3 function in cultured cells and in transgenic animals. Transfection of cultured fibroblasts with the R56A and R60A double mutant form of 14-3-3zeta (DN-14-3-3zeta) inhibited serum-stimulated ERK MAPK activation, but increased the basal activation of JNK1 and p38 MAPK. Fibroblasts transfected with DN-14-3-3zeta exhibited markedly increased apoptosis in response to UVC irradiation that was blocked by pre-treatment with a p38 MAPK inhibitor, SB202190. Targeted expression of DN-14-3-3eta to murine postnatal cardiac tissue increased the basal activation of JNK1 and p38 MAPK, and affected the ability of mice to compensate for pressure overload, which resulted in increased mortality, dilated cardiomyopathy and massive cardiomyocyte apoptosis. These results demonstrate that a primary function of mammalian 14-3-3 proteins is to inhibit apoptosis.  相似文献   

9.
GEF-H1 is a guanine nucleotide exchange factor for Rho whose activity is regulated through a cycle of microtubule binding and release. Here we identify a region in the carboxyl terminus of GEF-H1 that is important for suppression of its guanine nucleotide exchange activity by microtubules. This portion of the protein includes a coiled-coil motif, a proline-rich motif that may interact with Src homology 3 domain-containing proteins, and a potential binding site for 14-3-3 proteins. We identify GEF-H1 as a binding target and substrate for p21-activated kinase 1 (PAK1), an effector of Rac and Cdc42 GTPases, using an affinity-based screen and localize a PAK1 phosphorylation site to the inhibitory carboxyl-terminal region of GEF-H1. We show that phosphorylation of GEF-H1 at Ser(885) by PAK1 induces 14-3-3 binding to the exchange factor and relocation of 14-3-3 to microtubules. Phosphorylation of GEF-H1 by PAK may be involved in regulation of GEF-H1 activity and may serve to coordinate Rho-, Rac-, and Cdc42-mediated signaling pathways.  相似文献   

10.
11.
Connexin43 (Cx43) is a membrane-spanning protein that forms channels that bridge the gap between adjacent cells and this allows for the intercellular exchange of information. Cx43 is regulated by phosphorylation and by interacting proteins. “Mode-1” interaction with 14-3-3 requires phosphorylation of Ser373 on Cx43 (Park et al. 2006). Akt phosphorylates and targets a number of proteins to interactions with 14-3-3. Here we demonstrate that Akt phosphorylates Cx43 on Ser373 and Ser369; antibodies recognizing Akt-phosphorylated sites or phospho-Ser “mode-1” 14-3-3-binding sites recognize a protein from EGF-treated cells that migrates as Cx43, and GST-14-3-3 binds to Cx43 phosphorylated endogenously in EGF-treated cells. Confocal microscopy supports the co-localization of Cx43 with Akt and with 14-3-3 at the outer edges of gap junctional plaques. These data suggest that Akt could target Cx43 to an interaction with 14-3-3 that may play a role in the forward trafficking of Cx43 multimers and/or their incorporation into existing gap junctional plaques.  相似文献   

12.
Plant 14-3-3 proteins regulate important cellular processes, including plant immune responses, through protein-protein interactions with a wide range of target proteins. In rice (Oryza sativa), the GF14e gene, which encodes a 14-3-3 protein, is induced during effector-triggered immunity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo). To determine whether the GF14e gene plays a direct role in resistance to disease in rice, we suppressed its expression by RNAi silencing. GF14e suppression was correlated with the appearance of a lesion-mimic (LM) phenotype in the transgenic plants at 3 weeks after sowing. This indicates inappropriate regulation of cell death, a phenotype that is frequently associated with enhanced resistance to pathogens. GF14e-silenced rice plants showed high levels of resistance to a virulent strain of Xoo compared with plants that were not silenced. Enhanced resistance was correlated with GF14e silencing prior to and after development of the LM phenotype, higher basal expression of a defense response peroxidase gene (POX22.3), and accumulation of reactive oxygen species (ROS). In addition, GF14e-silenced plants also exhibit enhanced resistance to the necrotrophic fungal pathogen Rhizoctonia solani. Together, our findings suggest that GF14e negatively affects the induction of plant defense response genes, cell death and broad-spectrum resistance in rice.  相似文献   

13.
The tumour suppressor gene product Mig-6 acts as an inhibitor of epidermal growth factor (EGF) signalling. However, its posttranslational modifications and regulatory mechanisms have not been elucidated. Here, we investigated the phosphorylation of human Mig-6 and found that Chk1 phosphorylated Mig-6 in vivo as well as in vitro. Moreover, EGF stimulation promoted phosphorylation of Mig-6 without DNA damage and the phosphorylation was inhibited by depletion of Chk1. EGF also increased Ser280-phosphorylated Chk1, a cytoplasmic-tethering form, via PI3K pathway. Mass spectrometric analyses suggested that Ser 251 of Mig-6 was a major phosphorylation site by Chk1 in vitro and in vivo. Substitution of Ser 251 to alanine increased inhibitory activity of Mig-6 against EGF receptor (EGFR) activation. Moreover, EGF-dependent activation of EGFR and cell growth were inhibited by Chk1 depletion, and were rescued by co-depletion of Mig-6. Our results suggest that Chk1 phosphorylates Mig-6 on Ser 251, resulting in the inhibition of Mig-6, and that Chk1 acts as a positive regulator of EGF signalling. This is a novel function of Chk1.  相似文献   

14.
The order and fidelity of cell cycle events in mammals is intimately linked to the integrity of the Chk1 kinase-Cdc25A phosphatase pathway. Chk1 phosphorylation targets Cdc25A for destruction and, as shown here, inhibits interactions between Cdc25A and its mitotic substrate cyclin B1-Cdk1. Phosphorylation of Cdc25A on serine 178 and threonine 507 facilitates 14-3-3 binding, and Chk1 phosphorylates both residues in vitro. Mutation of T507 to alanine (T507A) enhanced the biological activity of Cdc25A. Cdc25A(T507A) was more efficient in binding to cyclin B1, activating cyclin B1-Cdk1, and promoting premature entry into mitosis. We propose that the Chk1/Cdc25A/14-3-3 pathway functions to prevent cells from entering into mitosis prior to replicating their genomes to ensure the fidelity of the cell division process.  相似文献   

15.
16.
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.  相似文献   

17.
14-3-3 sigma, implicated in cell cycle arrest by p53, was cloned by expression cloning through cyclin-dependent kinase 2 (CDK2) association. 14-3-3 sigma shares cyclin-CDK2 binding motifs with different cell cycle regulators, including p107, p130, p21(CIP1), p27(KIP1), and p57(KIP2), and is associated with cyclin.CDK complexes in vitro and in vivo. Overexpression of 14-3-3 sigma obstructs cell cycle entry by inhibiting cyclin-CDK activity in many breast cancer cell lines. Overexpression of 14-3-3 sigma can also inhibit cell proliferation and prevent anchorage-independent growth of these cell lines. These findings define 14-3-3 sigma as a negative regulator of the cell cycle progression and suggest that it has an important function in preventing breast tumor cell growth.  相似文献   

18.
Recent studies have documented direct interaction between 14-3-3 proteins and key molecules in signal transduction pathways like Ras, Cbl, and protein kinases. In T cells, the 14-3-3tau isoform has been shown to associate with protein kinase C theta and to negatively regulate interleukin-2 secretion. Here we present data that 14-3-3tau interacts with protein kinase C mu (PKCmu), a subtype that differs from other PKC members in structure and activation mechanisms. Specific interaction of PKCmu and 14-3-3tau can be shown in the T cell line Jurkat by immunocoprecipitiation and by pulldown assays of either endogenous or overexpressed proteins using PKCmu-specific antibodies and GST-14-3-3 fusion proteins, respectively. Using PKCmu deletion mutants, the 14-3-3tau binding region is mapped within the regulatory C1 domain. Binding of 14-3-3tau to PKCmu is significantly enhanced upon phorbol ester stimulation of PKCmu kinase activity in Jurkat cells and occurs via a Cbl-like serine containing consensus motif. However, 14-3-3tau is not a substrate of PKCmu. In contrast 14-3-3tau strongly down-regulates PKCmu kinase activity in vitro. Moreover, overexpression of 14-3-3tau significantly reduced phorbol ester induced activation of PKCmu kinase activity in intact cells. We therefore conclude that 14-3-3tau is a negative regulator of PKCmu in T cells.  相似文献   

19.
20.

Background

Trehalases are highly conserved enzymes catalyzing the hydrolysis of trehalose in a wide range of organisms. The activity of yeast neutral trehalase Nth1 is regulated in a 14-3-3- and a calcium-dependent manner. The Bmh proteins (the yeast 14-3-3 isoforms) recognize phosphorylated Nth1 and enhance its enzymatic activity through an unknown mechanism.

Methods

To investigate the structural basis of interaction between Nth1 and Bmh1, we used hydrogen/deuterium exchange coupled to mass spectrometry, circular dichroism spectroscopy and homology modeling to identify structural changes occurring upon the complex formation.

Results

Our results show that the Bmh1 protein binding affects structural properties of several regions of phosphorylated Nth1: the N-terminal segment containing phosphorylation sites responsible for Nth1 binding to Bmh, the region containing the calcium binding domain, and segments surrounding the active site of the catalytic trehalase domain. The complex formation between Bmh1 and phosphorylated Nth1, however, is not accompanied by the change in the secondary structure composition but rather the change in the tertiary structure.

Conclusions

The 14-3-3 protein-dependent activation of Nth1 is based on the structural change of both the calcium binding domain and the catalytic trehalase domain. These changes likely increase the accessibility of the active site, thus resulting in Nth1 activation.

General significance

The results presented here provide a structural view of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, which might be relevant to understand the process of Nth1 activity regulation as well as the role of the 14-3-3 proteins in the regulation of other enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号