首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copper-specific damage in human erythrocytes exposed to oxidative stress   总被引:1,自引:0,他引:1  
Ascorbate and complexes of Cu(II) and Fe(III) are capable of generating significant levels of oxygen free radicals. Exposure of erythrocytes to such oxidative stress leads to increased levels of methemoglobin and extensive changes in cell morphology. Cu(II) per mole is much more effective than Fe(III). However, isolated hemoglobin is oxidized more rapidly and completely by Fe(III)- than by Cu(II)-complexes. Both Fe(III) and Cu(II) are capable of inhibiting a number of the key enzymes of erythrocyte metabolism. The mechanism for the enhanced activity of Cu(II) has not been previously established. Using intact erythrocytes and hemolysates we demonstrate that Cu(II)-, but not Fe(III)-complexes in the presence of ascorbate block NADH-methemoglobin reductase. Complexes of Cu(II) alone are not inhibitory. The relative inability of Fe(III)-complexes and ascorbate to cause methemoglobin accumulation is not owing to Fe(III) association with the membrane, or its failure to enter the erythrocytes. The toxicity of Cu(II) and ascorbate appears to be a result of site-specific oxidative damage of erythrocyte NADH-methemoglobin reductase and the enzyme's subsequent inability to reduce the oxidized hemoglobin.  相似文献   

2.
Organophosphate (OP) pesticides such as dimethoate and malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. It is possible that vitamin E being present at the cell membrane site may prevent OP-induced oxidative damage. In the present study, rats were pretreated orally with vitamin E (250 mg/kg body wt, twice a week for 6 weeks) prior to oral administration of a single low dose of dimethoate and/or malathion (0.01% LD(50)). The result showed that treatment with OP increased lipid peroxidation (LPO) in erythrocytes, however, vitamin E pretreated rats administered OP's showed decreased LPO in erythrocytes. The increase in the activities of superoxide dismutase (SOD) and catalase (CAT) and total-SH content in erythrocytes from dimethoate and/or malathion treated rats as compared to control appears to be a response towards increased oxidative stress. Vitamin E pretreated animals administered OP's showed a lowering in these parameters as compared to OP treated rats which indicates that vitamin E provide protection against OP-induced oxidative stress. The glutathione-S-transferase (GST) activity in erythrocytes was inhibited in OP intoxicated rats which partially recovered in vitamin E pretreated animals administered OP's. Inhibition in erythrocyte and serum acetylcholinesterase (AChE) activity was not relieved in vitamin E pretreated rats administered OP's probably due to the competitive nature of enzyme inhibition by OP's. The results show that vitamin E may amelierate OP-induced oxidative stress by decreasing LPO and altering antioxidant defense system in erthrocytes.  相似文献   

3.
Iron status and oxidative stress in beta-thalassemia patients in Jakarta   总被引:1,自引:0,他引:1  
A study on thalassemia intermedia and major patients in Jakarta was initiated to obtain a comprehensive picture of metabolic dysregulation, iron overload, oxidative stress, and cell damage. Data are presented from a group of 14 transfusion-dependent patients in an age range of 11-25 years (T) and another group of 9 frequently transfused (for at least 15 years) patients aged 17-30 years (L). A third group comprised 6 patients (aged 7 to 14 years) who had not yet obtained transfusions (N). The 21 controls (C) were voluntary students without diagnosis or clinical signs of thalassemia up to 30 years of age. The study was approved by the Ethical Clearance Board of the Medical Faculty and all blood samples from controls and patients were obtained on fully informed consent. Levels of antioxidants (vitamins A, C, E and beta-carotene) and reactive thiols are considerably decreased in transfused patients, whereas signs of iron overload and cell damage are increased (serum iron, ferritin, transferrin saturation, SGOT, SGPT, gamma-GT, bilirubin). Results can be summarized that non-transfused thalassemia intermedia patients exert slight signs of oxidative stress, and increased hemoglobin degradation but no significant indication of tissue or cell damage. This picture differs considerably from transfusion-dependent thalassemia major patients: highly significant decrease in antioxidants and thiols and tremendous iron overload and cell damage. The picture is even worsened in long-term transfused patients. Iron chelation after transfusion is not sufficient in Indonesia, because it is normally (with few exceptions) applied only once together with transfusion. Hence, one major reason of the bad condition of transfusion-dependent thalassemia patients in Indonesia appears to be frequent transfusions (on the average one per month) and insufficient chelation of one treatment per month together with transfusion.  相似文献   

4.
This study was aimed at determining the effect of vitamin E, vitamin C, and carnitine on intermittent hypobaric-hypoxia-induced oxidative stress (OS) in erythrocytes. For this purpose, male Wistar rats of 4 months of age were orally supplemented with one of the antioxidants prior to exposure to altitudes of 5700 m or 6300 m. Hemoglobin (Hb) and OS indices such as osmotic fragility and hemolysis were measured together with lipid peroxidation (LPO) and protein oxidation. The increase in Hb was accompanied by increase in activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) during exposure to both the altitudes without any further elevation by supplements. The extent of reduction in osmotic fragility and hemolysis by vitamin E and carnitine was greater at 6300 m than at 5700 m. Increase in LPO products, for example, malondialdehyde (MDA) and lipofuscin-like autofluorescent substances (AFS) was noticeable at both the altitudes, and vitamin E and carnitine were effective in reducing LPO. While protein oxidation products such as carbonyl content (PrC) and advanced oxidation protein products (AOPP) increased at 6300 m, protein sulphydryl (P-SH) content decreased. P-SH levels were restored on supplementation of antioxidants. Hence, our results indicate that vitamin E, vitamin C, and carnitine may be beneficial in overcoming OS and hemolysis under situations such as intermittent hypobaric hypoxia (IHH) and hypobarotherapy wherein hypoxia is used to correct many pathological situations in humans. Further, this study suggests that supplementation of vitamin E, vitamin C, and L-carnitine alone and not in combination can be beneficial in attenuating the OS associated with IHH compared to the unsupplemented rats exposed to two different altitudes.  相似文献   

5.
Oxidative damage accumulation in macromolecules has been considered as a cause of cellular damage and pathology. Rarely, the oxidative stress parameters in healthy humans related to the individual age have been reported. The purpose of this study was to examine the redox status in plasma and erythrocytes of healthy individuals and determine correlations between these parameters and the aging process. The following parameters were used: malondialdehyde (MDA), protein carbonyls (PCO), 4-hydroxy-2,3-trans-nonenal (HNE), reduced glutathione (GSH), glutathione disulfide (GSSG) and uric acid (UA) in blood and plasma samples of 194 healthy women and men of ages ranging from 18 to 84 years. The results indicate that the balance of oxidant and antioxidant systems in plasma shifts in favor of accelerated oxidation during ageing. That is demonstrated by increases of MDA, HNE, GSSG and by the slight decrease of erythrocytic GSH with age. As the content of UA is more determined by metabolic and nutritional influences than by the balance between prooxidants and antioxidants there was no significant age-related change observed. For plasma concentrations of HNE the first time age-dependent reference values for healthy humans are presented.  相似文献   

6.
Vitamin E deficiency in rats led to a sequence of antioxidant defense adaptations in the liver. After three weeks, α-tocopherol concentration was 5% of control, but ascorbate and ubiquinol concentrations were 2- to 3-fold greater than control. During the early phase of adaptation no differences in markers of lipid peroxidation were observed, but the activities of both cytochrome b5 reductase and glucose-6-phosphate dehydrogenase were significantly greater in deficient livers. By nine weeks, accumulation of lipid peroxidation end products began to occur along with declining concentrations of ascorbate, and higher NQO1 activities. At twelve weeks, rat growth ceased, and both lipid peroxidation products and cytosolic calcium-independent phospholipase A2 reached maximum concentrations. Thus, in growing rats the changes progressed from increases in both ubiquinol and quinone reductases through accumulation of lipid peroxidation products and loss of endogenous antioxidants to finally induction of lipid metabolizing enzymes and cessation of rat growth.  相似文献   

7.
Atherosclerosis-related vascular complications in beta-thalassemia/hemoglobin E (beta-thal/Hb E) patients may result from iron induced oxidation of lipoproteins. To identify the specific site of oxidative damage, changes in lipid fluidity at different regions in LDL and HDL particle were investigated using two fluorescence probes and two ESR spin probes. The magnitude of increased lipid fluidity in thalassemic lipoproteins was dependent on the location of the probes. In hydrophobic region, the rotational correlation times for 16-doxyl stearic acid and DPH anisotropy were markedly changed in LDL and HDL of the patients. In the surface region, there was only a slight change in the order parameter (S) for 5-doxyl stearic acid and TMA-DPH anisotropy. Lipid fluidity at the core of LDL and HDL showed good correlation with oxidative stress markers, the ratio of CL/CO, and the level of alpha-tocopherol, suggesting that hydrophobic region of thalassemic lipoprotein was a target site for oxidative damage.  相似文献   

8.
Oxidative stress plays an important role in the pathogenesis of numerous chronic age-related free radical-induced diseases. Improved antioxidant status minimizes oxidative damage to DNA, proteins, lipids and other biomolecules. Diet-derived antioxidants such as vitamin C, vitamin E, carotenoids and related plant pigments are important in antioxidative defense and maintaining health. The results of long-term epidemiological and clinical studies suggest that protective vitamin C plasma concentration for minimum risk of free radical disease is higher than 50 micromol/l. Products of oxidative damage to DNA (DNA strand breaks with oxidized purines and pyrimidines), proteins (carbonyls) and lipids (conjugated dienes of fatty acids, malondialdehyde) were estimated in a group of apparently healthy adult non-smoking population in dependence on different vitamin C plasma concentrations. Under conditions of protective plasma vitamin C concentrations (>50 micromol/l) significantly lower values of DNA, protein and lipid oxidative damage were found in comparison with the vitamin C-deficient group (<50 micromol/l). The inhibitory effect of higher fruit and vegetable consumption (leading to higher vitamin C intake and higher vitamin C plasma concentrations) on oxidation of DNA, proteins and lipids is also expressed by an inverse significant correlation between plasma vitamin C and products of oxidative damage. The results suggest an important role of higher and frequent consumption of protective food (fruit, vegetables, vegetable oils, nuts, seeds and cereal grains) in prevention of free radical disease.  相似文献   

9.
Previously, we developed a method to monitor the development of oxidative stress in isolated liver mitochondria. The method is based on recording of membrane potential changes in response to sequential introduction of low concentrations (5–20 μM) of tert-butyl hydroperoxide (tBHP). It allows monitoring of the extent of amplification or attenuation of oxidative stress caused by external influences (changes in incubation conditions, additions of biologically active substances). Based on this method, we created a mitochondrial model for the study and improvement of treatment of pathologies associated with oxidative stress. The following two processes were simulated in the experiments: 1) introduction of desferal for treatment of serious diseases caused by cell overload with iron (high desferal concentrations were shown to suppress mitochondrial energetics); 2) efficiency of alkalization to reduce mitochondrial damage induced by oxidative stress. The experiments have shown that even a small increase in pH (alkalization) increases the amount of tBHP that can be added to mitochondria before the MPTP (“mitochondrial permeability transition pore”) is induced. The effect of alkalization was shown to be close to the effect of cyclosporin A in the pH range 7.2–7.8. The mechanism of the similarities of these effects in the organism and in mitochondrial suspensions is explained by the increase in toxic reactive oxygen species in both systems under oxidative stress.  相似文献   

10.
Reduced and oxidized glutathione levels in red blood cells and plasma from humans were determined after oral vitamin E treatment. The experiments confirmed that vitamin E enhances reduced glutathione levels in red blood cells. Moreover, vitamin E supplement resulted in a significant reduction of the plasma oxidized glutathione content. Thus, it seems that the effect of vitamin E on the reduced glutathione content is not exerted via direct modulation of the glutathione-synthesizing enzymes, but rather by a more general mechanism of preserving reduced glutathione consumption by reducing the burden of the glutathione system.  相似文献   

11.
The oxidation hypothesis of atherogenesis has been the focus of much research over the past 2 decades. However, randomized placebo-controlled trials evaluating the efficacy of vitamin E in preventing cardiovascular events in aggregate have failed to show a beneficial effect. Implicit in these trials is that the dose of vitamin E tested effectively suppressed oxidative stress status but this was never determined. We defined the dose-dependent effects of vitamin E (RRR-alpha-tocopherol) to suppress plasma concentrations of F2-isoprostanes, a biomarker of free radical-mediated lipid peroxidation, in participants with polygenic hypercholesterolemia and enhanced oxidative stress, a population at risk for cardiovascular events. A time-course study was first performed in participants supplemented with 3200 IU/day of vitamin E for 20 weeks. A dose-ranging study was then performed in participants supplemented with 0, 100, 200, 400, 800, 1600, or 3200 IU/day of vitamin E for 16 weeks. In the time-course study, maximum suppression of plasma F2-isoprostane concentrations did not occur until 16 weeks of supplementation. In the dose-ranging study there was a linear trend between the dosage of vitamin E and percentage reduction in plasma F2-isoprostane concentrations which reached significance at doses of 1600 IU (35+/-2%, p<0.035) and 3200 IU (49+/-10%, p<0.005). This study provides information on the dosage of vitamin E that decreases systemic oxidant stress in vivo in humans and informs the planning and evaluation of clinical studies that assess the efficacy of vitamin E to mitigate disease.  相似文献   

12.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

13.
A correlation between endogenous hemin and pro-oxidant activity was revealed in serum of beta-thalassemia/hemoglobin E disease (beta-thal/Hb E), which is the most common prevalent type of thalassemia in Thailand. The technique of low temperature electron spin resonance spectroscopy was used for characterization and quantification of high spin ferric heme, which had been identified as hemin (iron (III)-protoporphyrin IX). Hemin was present at levels ranging from 50 to 280 microM in serum of beta-thal/Hb E but not detectable in serum of non-thalassemia. Pro-oxidant activity in serum of beta-thal/Hb E was demonstrated by luminol-mediated chemiluminescence, a sensitive method for screening of free radical generation in vitro. In the presence of H2O2, the chemiluminescence intensity (CL) was about 20 fold enhanced in serum of beta-thal/Hb E, indicating its extensive pro-oxidant activity. The CL showed a good correlation with serum heroin, r = 0.778 (p < 0.001), while the correlations with total serum iron and serum ferritin were 0.260 (p = 0.259) and 0.519 (p = 0.004), respectively. Our finding suggested that serum hemin readily catalyzed free radical reactions and it may contribute a major pro-oxidant in blood circulation of beta-thal/Hb E.  相似文献   

14.
Cataractous lenses have been found to have an altered distribution of the intracellular ionic environment: the concentrations of potassium and magnesium being decreased and the concentrations of sodium and calcium increased. These changes arise as a result of changes to lens membrane characteristics causing an increase in lens membrane permeability. In this study flame atomic absorption spectroscopy (AAS) was used for calcium, magnesium, iron and zinc determination, and flame atomic emission spectroscopy (AES) was used for sodium and potassium contents in normal and cigarette smoke-exposed rat lenses. The methods are sensitive enough to detect quantitatively all six cations in a single rat lenses. In this work, six elements, including Ca2+, K+, Na+, Zn2+, Fe2+ and Mg2+ in experimental rat eye lenses and normal transparent lenses were determined. It was found that the concentrations of Ca2+, Na+, Zn2+, and Fe2+ were increased dramatically while K+ and Mg2+ decreased in smoke-exposed rat lenses when compared to the control rat lenses. There were no significant changes between 'smoked' rats supplied with vitamin C and control groups. A positive correlation was found also in the other two groups of 'cigarette smoked' animals supplemented with selenium plus vitamin E and selenium when compared with 'cigarette smoked' without any supplements. These data provide support for the hypothesis that cigarette smoking increases the risk of cataract formation. We investigated whether vitamin C is the most important antioxidant in the body. The roles of diet with optimum amounts of antioxidant vitamins C and vitamin E and the antioxidant mineral selenium are discussed.  相似文献   

15.
Present study examines effects of curcumin and vitamin E on oxidative stress parameters, antioxidant defence enzymes and oxidized (GSSG) and reduced glutathione (GSH) levels in testis of L-thyroxine (T4)-induced hyperthyroid rats. The oxidative stress in T4-treated rat testis was evident from elevation in oxidative stress parameters such as lipid peroxide and protein carbonyl contents, decrease in superoxide dismutase (SOD) and catalase (CAT) activities and increase in glutathione peroxidase (GPx) activity. This is accompanied with decrease in number and mortality of epididymal sperms. When the T4-treated rats were fed with vitamin E and/or curcumin, the lipid peroxide and protein carbonyl contents in crude homogenates of testes decreased to normal level. Treatment of curcumin and/or vitamin E to T4-treated rats resulted in elevation of SOD level in postmitochondrial fraction (PMF) and mitochondrial fraction (MF) and CAT in PMF, with decreased GPx activity in MF. However, curcumin or vitamin E was unable to change GPx activity alone but in together they elevated the GPx in PMF of T4-treated rat testis. Both the antioxidants are incapable of producing significant changes in GSH:GSSG ratio of PMF of T4-treated rats. In MF, GSH:GSSG ratio elevated and decreased respectively by curcumin and vitamin E treatments to T4-treated rats, however, in together these antioxidants caused an elevated GSH:GSSG ratio with a value less than when vitamin E given alone to T4-treated rats. Vitamin E not the curcumin elevates total sperm count and percentage of live sperm impaired by hyperthyroid state. In summary, both vitamin E and curcumin are efficient in protecting testis from oxidative stress generated by T4 mainly in restoring antioxidant enzymes to the level of euthyroid animals up to some extent but vitamin E is more efficient than curcumin.  相似文献   

16.
Micromolar concentrations of estradiol are required to inhibit the oxidation of low-density lipoproteins (LDL) in vitro. Recent evidence suggests that estradiol must be modified before it can become an effective antioxidant at physiological levels. Our aim was to determine other possible conditions under which low concentrations of 17beta-estradiol can reduce LDL oxidation. LDL susceptibility to oxidation was monitored by measurements of conjugated diene formation. High levels of 17beta-estradiol reduced oxidative modification of LDL. Vitamin C and vitamin E also increased LDL resistance to Cu2+-mediated oxidation. More importantly, 10 nM 17beta-estradiol, which on its own had no effect, exhibited significant antioxidant actions in the presence of either vitamins C or E. In conclusion, supraphysiological concentrations of 17beta-estradiol are required to exert antioxidant effects directly in vitro. However, in the presence of vitamins C and E, concentrations of 17beta-estradiol close to physiological levels can also protect LDL from oxidation.  相似文献   

17.
The present study was conduced to investigate the synergistic effects of combined treatments with Se-methylselenocysteine (SeMSC) and vitamin E (Vit E) in reversing oxidative stress induced by ethanol in serum and different tissues of rats. Sixty female rats were randomly divided into six groups for 30 days’ consecutive pretreatments as followed: control (I), physiological saline (II), 2.8 μg kg−1 Se as SeMSC (III), 2.8 μg kg−1 Se as sodium selenite (Na2SeO3, IV), 5 mg kg−1 α-tocopherol as α-tocopherol acetate (Vit E, V), 5 mg kg−1 α-tocopherol as α-tocopherol acetate and 2.8 μg kg−1 Se as SeMSC (VI). All animals in groups II–VI were treated by ethanol treatment to cause oxidative stress. After 6 h of ethanol treatment, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), the contents of total antioxidant capacity (T-AOC), malondialdehyde (MDA), glutathione (GSH) and carbonyl protein (CP) in the serum, liver, heart and kidney were measured. The result showed that the individual SeSMC, Na2SeO3 and vitamin E could effectively increase the SOD, T-AOC, GSH-Px and GSH contents as well as significantly decrease the MDA and CP concentrations in the tissues of ethanol-induced rats. At the same dose on different forms of Se, SeMSC showed greater antioxidant activity than Na2SeO3. Moreover, group VI (SeMSC and α-tocopherol acetate) showed much better antioxidant activity than individual group III (SeMSC) and V (α-tocopherol acetate) due to the synergistic effect.  相似文献   

18.
This study investigated the supplementation with vitamin C or/and E on the antioxidant system in hemodialysis patients. Thirty-eight hemodialysis patients (27 males and 11 females) with the average of 60 years old were divided into four groups: placebo (400 mg starch/time), vitamin C (400 mg/time)-, vitamin E (400 mg d,l- alpha-tocopheryl acetate/time)-, and vitamin C (400 mg/time) + E (400 mg d,l- alpha-tocopheryl acetate/time)-supplemented groups for 6-week supplementation. The patients orally received three capsules of placebo or antioxidant(s) three times a week after finishing hemodialysis. Thirty-six healthy subjects (22 males and 14 females) with the average of 58 years old were recruited as the control group. Hemodialysis patients significantly decreased plasma vitamin C by 32%, erythrocyte glutathione by 26%, and plasma total antioxidant status by 9%, but increased plasma lipid peroxide levels by 102% compared with the control group at the baseline. The levels of plasma vitamin C and total antioxidant status significantly decreased by 24% and 18%, respectively, from the post-dialysate compared with those from the pre-dialysate. At week 6, vitamin C + E-supplemented group significantly increased plasma vitamin C and E, erythrocyte glutathione, and plasma antioxidant status, and inhibited plasma lipid peroxides compared with placebo group. Additionally, vitamin C + E-supplemented group had higher plasma vitamin C, vitamin E, and total antioxidant status, and lower plasma lipid peroxides than placebo group even at least 2 weeks after the termination of the supplements. Therefore, antioxidant vitamin supplements could improve antioxidant status and decrease lipid peroxides of hemodialysis patients.  相似文献   

19.
It has been well known that some volatile anesthetic agents produce oxidative stress. Desflurane as a new volatile agent might have limited oxidative toxic effect because it is relatively a new short‐acting anesthetic characterized by a short duration of action and a quick postanesthetic recovery. We investigated effect of desflurane on serum glutathione peroxidase (GSH‐Px), lipid peroxidation (LP), vitamin E, and erythrocyte superoxide dismutase (SOD) values in patients. Fifteen adult patients are scheduled for elective surgery, ASA I or II physical status. Tidal volume and ventilation frequency were kept unchanged during the operation. Baseline values in venous blood samples were preoperatively taken and blood was also taken postoperatively at the 1st and the 12th hours of desflurane exposure. LP levels were significantly (p < 0.05) higher postoperatively at 1st hour than in preoperative values while α‐tocopherol concentration was significantly (p < 0.001) lower in postoperative period at 1st hour than in preoperative period. Erythrocyte SOD and serum GSH‐Px activities did not differ between pre‐ and postoperative periods. In conclusion, we observed that desflurane produced oxidative stress by decreasing α‐tocopherol levels. Use of vitamin E may be possible to reduce the oxidative effect of desflurane. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
To study the interaction of the antioxidant vitamins C and E in a biological system, we used electron spin resonance (ESR) spectroscopy to make serial measurement of ascorbate tocopheroxyl free radicals in plasma subjected to continuous free radical-mediated oxidative stress. Upon initiation of a continuous oxidative stress, we observed an immediate increase in the concentration of ascorbate radical, which reached a peak, and then steadily declined. Only after the virtual disappearance of the ascorbate radical did we observe the appearance of the tocopheroxyl radical. These data are consistent with the hypothesis that ascorbate is the terminal small-molecule antioxidant in biological systems. This is the first experimental demonstration that the predicted thermodynamic hierarchy of ascorbate, -tocopherol, and their free radicals holds in a biological system containing endogenous levels of these antioxidant vitamins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号