首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Herpesvirus nucleocapsids assemble in the nucleus but mature to infectious virions in the cytoplasm. To gain access to this cellular compartment, nucleocapsids are translocated to the cytoplasm by primary envelopment at the inner nuclear membrane and subsequent fusion of the primary envelope with the outer nuclear membrane. The conserved viral pUL34 and pUL31 proteins play a crucial role in this process. In their absence, viral replication is strongly impaired but not totally abolished. We used the residual infectivity of a pUL34-deleted mutant of the alphaherpesvirus pseudorabies virus (PrV) for reversion analysis. To this end, PrV-ΔUL34 was serially passaged in rabbit kidney cells until final titers of the mutant virus PrV-ΔUL34Pass were comparable to those of wild-type PrV. PrV-ΔUL34Pass produced infectious progeny independently of the pUL34/pUL31 nuclear egress complex and the pUS3 protein kinase. Ultrastructural analyses demonstrated that this effect was due to virus-induced disintegration of the nuclear envelope, thereby releasing immature and mature capsids into the cytosol for secondary envelopment. Our data indicate that nuclear egress primarily serves to transfer capsids through the intact nuclear envelope. Immature and mature intranuclear capsids are competent for further virion maturation once they reach the cytoplasm. However, nuclear egress exhibits a strong bias for nucleocapsids, thereby also functioning as a quality control checkpoint which is abolished by herpesvirus-induced nuclear envelope breakdown.  相似文献   

2.
Egress of alphaherpesviruses: comparative ultrastructural study   总被引:8,自引:0,他引:8       下载免费PDF全文
Egress of four important alphaherpesviruses, equine herpesvirus 1 (EHV-1), herpes simplex virus type 1 (HSV-1), infectious laryngotracheitis virus (ILTV), and pseudorabies virus (PrV), was investigated by electron microscopy of infected cell lines of different origins. In all virus-cell systems analyzed, similar observations were made concerning the different stages of virion morphogenesis. After intranuclear assembly, nucleocapsids bud at the inner leaflet of the nuclear membrane, resulting in enveloped particles in the perinuclear space that contain a sharply bordered rim of tegument and a smooth envelope surface. Egress from the perinuclear cisterna primarily occurs by fusion of the primary envelope with the outer leaflet of the nuclear membrane, which has been visualized for HSV-1 and EHV-1 for the first time. The resulting intracytoplasmic naked nucleocapsids are enveloped at membranes of the trans-Golgi network (TGN), as shown by immunogold labeling with a TGN-specific antiserum. Virions containing their final envelope differ in morphology from particles within the perinuclear cisterna by visible surface projections and a diffuse tegument. Particularly striking was the addition of a large amount of tegument material to ILTV capsids in the cytoplasm. Extracellular virions were morphologically identical to virions within Golgi-derived vesicles, but distinct from virions in the perinuclear space. Studies with gB- and gH-deleted PrV mutants indicated that these two glycoproteins, which are essential for virus entry and direct cell-to-cell spread, are dispensable for egress. Taken together, our studies indicate that the deenvelopment-reenvelopment process of herpesvirus maturation also occurs in EHV-1, HSV-1, and ILTV and that membrane fusion processes occurring during egress are substantially different from those during entry and direct viral cell-to-cell spread.  相似文献   

3.
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.  相似文献   

4.
Cells infected with herpes simplex virus type 1 (HSV-1) were conventionally embedded or freeze substituted after high-pressure freezing and stained with uranyl acetate. Electron tomograms of capsids attached to or undergoing envelopment at the inner nuclear membrane (INM), capsids within cytoplasmic vesicles near the nuclear membrane, and extracellular virions revealed the following phenomena. (i) Nucleocapsids undergoing envelopment at the INM, or B capsids abutting the INM, were connected to thickened patches of the INM by fibers 8 to 19 nm in length and < or =5 nm in width. The fibers contacted both fivefold symmetrical vertices (pentons) and sixfold symmetrical faces (hexons) of the nucleocapsid, although relative to the respective frequencies of these subunits in the capsid, fibers engaged pentons more frequently than hexons. (ii) Fibers of similar dimensions bridged the virion envelope and surface of the nucleocapsid in perinuclear virions. (iii) The tegument of perinuclear virions was considerably less dense than that of extracellular virions; connecting fibers were observed in the former case but not in the latter. (iv) The prominent external spikes emanating from the envelope of extracellular virions were absent from perinuclear virions. (v) The virion envelope of perinuclear virions appeared denser and thicker than that of extracellular virions. (vi) Vesicles near, but apparently distinct from, the nuclear membrane in single sections were derived from extensions of the perinuclear space as seen in the electron tomograms. These observations suggest very different mechanisms of tegumentation and envelopment in extracellular compared with perinuclear virions and are consistent with application of the final tegument to unenveloped nucleocapsids in a compartment(s) distinct from the perinuclear space.  相似文献   

5.
Envelope glycoprotein M (gM) and the complex formed by glycoproteins E (gE) and I (gI) are involved in the secondary envelopment of pseudorabies virus (PrV) particles in the cytoplasm of infected cells. In the absence of the gE-gI complex and gM, envelopment is blocked and capsids surrounded by tegument proteins accumulate in the cytoplasm (A. R. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Here we demonstrate by yeast two-hybrid analyses that the cytoplasmic domains of gE and gM specifically interact with the C-terminal part of the UL49 gene product of PrV, which represents a major tegument protein and which is homologous to VP22 of herpes simplex virus type 1. However, deletion of the UL49 gene from PrV had only minor effects on viral replication, and ultrastructural analyses of infected cells confirmed that virus maturation and egress, including secondary envelopment in the cytoplasm, were not detectably affected by the absence of UL49. Moreover, the UL49 gene product was shown to be dispensable for virion localization of gE and gM, and mutants lacking either gE or gM incorporated the UL49 protein efficiently into virus particles. In contrast, a PrV mutant with deletions of gE-gI and gM failed to incorporate the UL49 protein despite apparently unaltered intracytoplasmic UL49 expression. In summary, we describe specific interactions between herpesvirus envelope and tegument proteins which may play a role in secondary envelopment during herpesvirus virion maturation.  相似文献   

6.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

7.
Morphogenesis of Sindbis virus in cultured Aedes albopictus cells.   总被引:11,自引:11,他引:0       下载免费PDF全文
Cultured mosquito cells were found to produce Sindbis virus nearly as efficiently as BHK-21 cells at 28 C. In virtually all of the cells observed in the electron microscope, virus morphogenesis was found to occur within complex vesicular structures which developed after viral infection. Viral nucleocapsids were first seen in these vesicles and appeared to be enveloped within these structures. The process of envelopment within these inclusions differed in some respects from the process previously described for the envelopment of nucleocapsids at the plasma membrane of vertebrae cells. Free nucleocapsids were only rarely seen in the cytoplasm of infected mosquito cells, and budding of virus from the cell surface was detected so infrequently that this process of virus production could not account for the amount of virus produced by the infected cells. The vast majority of extracellular virus was produced by the fusion of the virus-containing vesicles with the plasma membrane releasing mature virions and membrane nucleocapsid complexes in various stages of development.  相似文献   

8.
The hypertrophy nuclear polyhedrosis virus of the armyworm, Pseudaletia unipuncta, causes a unique gradient of infected cells to form on the trachea. The movement and invasion of the virus apparently were not through adjacent intercellular membranes. The enveloped viruses emerged from the initially infected cell into an area between the cell plasma membrane and basal lamina, and then entered the uninfected tracheal cell either by lateral attachment and fusion of the viral envelope and the plasma membrane or by viropexis. The two methods of viral invasion into the cell suggest the presence of at least two phenotypically different enveloped viruses. Viropexis was initiated with an alignment of the peplomer spikes with regularly spaced, short radial striations on the inner coat of the plasma membrane. At a late state in viropexis, the viral envelope fused with the vacuole membrane, and an opening developed below the site of membrane fusion through which the nucleocapsid might enter the cytoplasm. Some nucleocapsids in membrane-lined vesicles resulting from viropexis appeared to be in a state of dissolution. Naked nucleocapsids were found along the nuclear envelope and within the nucleoplasm. No uncoating of the nucleocapsids was observed at the nucleopores, but uncoating seemed to occur in the nucleoplasm. Nucleocapsids were also found in the cytoplasm of nonsusceptible fat body cells, in which virus replication was not observed.  相似文献   

9.
Herpesviruses acquire a primary envelope by budding of capsids at the inner leaflet of the nuclear membrane. They then traverse into the cytoplasm after fusion of the primary envelope with the outer leaflet of the nuclear membrane. In the alphaherpesvirus pseudorabies virus (PrV), the latter process is impaired when the US3 protein is absent. Acquisition of final tegument and envelope occurs in the cytoplasm. Besides the capsid components, only the UL31 and UL34 gene products of PrV have unequivocally been shown to be part of primary enveloped virions, whereas they lack several tegument proteins present in mature virions (reviewed by T. C. Mettenleiter, J. Virol. 76:1537-1547, 2002). Using immunoelectron microscopy, we show that the US3 protein is present in primary enveloped as well as in mature virions. It is also detectable in intracytoplasmic inclusions produced in the absence of other viral tegument components or envelope-associated glycoproteins. In particular, inclusions formed in the absence of the inner tegument protein UL37 contained the US3 protein. Thus, the US3 protein is a tegument component of both forms of enveloped alphaherpes virions. We hypothesize that US3 protein in primary virions modulates deenvelopment at the outer leaflet of the nuclear membrane and is either lost from primary virions during nuclear egress and subsequently reacquired early during tegumentation or is retained during transit of the nucleocapsid through the nuclear membrane.  相似文献   

10.
The processes of cytoplasmic budding in Euproctis subflava nuclear polyhedrosis virus (NPV) were investigated, and comparisons were made among three types of envelopes which were acquired by, 1) de novo morphogenesis in the nuclei, 2) nuclear budding, and 3) cytoplasmic budding. The direction of nucleocapsids in the envelope was the same in these three modes of envelopment; the envelopment seemed to occur from a nipple end which was at one extremity of the nucleocapsid. After the envelopment, electron-dense materials were seen between the envelope and nucleocapsid, though their contents and morphological features were different among the three types of envelopes. However, these materials seemed to function similarly as a mediator between the envelope and nucleocapsid as have been observed in many vertebrate viruses which acquire envelopes. A marked difference among the three types of envelope was the characteristic cap-shaped structures with spikes which were seen only on the surface of envelope derived from the plasma membrane. After cytoplasmic budding, nucleocapsids enveloped by this way were located on the basement membrane or liberated in the hemocoel, and then they appeared to enter neighboring healthy cells via viropexis with the spike end at the head. At the sites where these spikes came into contact with healthy cells, coated vesicle-like structures were observed inside the plasma membrane. Occasionaly, incomplete particles which lacked nucleocapsids were also budded through the plasma membrane and released into extracellular space.  相似文献   

11.
Glycoprotein M (gM), the product of the UL10 gene of pseudorabies virus (PrV), is one of the few nonessential glycoproteins conserved throughout the Herpesviridae. In contrast to wild-type PrV strains, the UL10 gene product of the attenuated PrV vaccine strain Bartha (PrV-Ba) is not modified by N-glycans due to a mutation in the DNA sequence encoding the consensus N-glycosylation motif. To assay function of the UL10 protein in PrV-Ba, a UL10-deletion mutant (PrV-Ba-UL10(-)) was isolated. Surprisingly, in contrast to gM-deleted wild-type PrV, PrV-Ba-UL10(-) was severely impaired in plaque formation, inducing only foci of very few infected RK13, Vero, and PSEK cells and tiny plaques on MDBK cells. Since this effect was significantly more dramatic than in wild-type PrV, additional mutations known to be present in PrV-Ba were analyzed for their contribution to this phenotype. trans-complementation of the mutated PrV-Ba UL21 or gC protein by the wild-type version had no influence on the observed phenotype. In contrast, complementation of the gE/gI deletion rescued the phenotype. The synergistic effect of deletions in gE/gI and gM on plaque size was verified by construction of a gE/I/M triple mutant derived from wild-type PrV which exhibited the same phenotype. The dramatic effect of deletion of gM on plaque size in a gE/I- virus background was mainly attributable to a function of gM, and not of the gM/gN complex, as shown by analysis of a gE/I/N triple mutant. Interestingly, despite the strong effect on plaque size, penetration was not significantly impaired. In noncomplementing cells infected with the gE/I/M triple mutant, electron microscopy showed absence of secondary envelopment in the cytoplasm but occurrence of intracytoplasmic accumulations of nucleocapsids in association with electron dense material, presumably tegument proteins. These structures were not observed after infection of cells expressing either gE/I or gM. We suggest that gE/I and gM are required for late stages in virion morphogenesis prior to final envelopment in the cytoplasm.  相似文献   

12.
Egress of herpes simplex virus (HSV) and other herpesviruses from cells involves extensive modification of cellular membranes and sequential envelopment and deenvelopment steps. HSV glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Capsids in the nucleus undergo primary envelopment at the inner nuclear membrane (INM), and then enveloped virus particles undergo deenvelopment by fusing with the outer nuclear membrane (ONM). Capsids delivered into the cytoplasm then undergo secondary envelopment, involving trans-Golgi network (TGN) membranes. The deenvelopment step involves HSV glycoproteins gB and gH/gL acting in a redundant fashion. This fusion has features common to the fusion that occurs between the virion envelope and cellular membranes when HSV enters cells, a process requiring gB, gD, and gH/gL. Whether HSV gD also participates (in a redundant fashion with gB or gH/gL) in deenvelopment has not been characterized. Secondary envelopment in the cytoplasm is known to involve HSV gD and gE/gI, also acting in a redundant fashion. Whether gB might also contribute to secondary envelopment, collaborating with gD and gE/gI, is also not clear. To address these questions, we constructed an HSV double mutant lacking gB and gD. The HSV gB(-)/gD(-) mutant exhibited no substantial defects in nuclear egress. In contrast, secondary envelopment was markedly reduced, and there were numerous unenveloped capsids that accumulated in the cytoplasm, as well as increased numbers of partially enveloped capsids and morphologically aberrant enveloped particles with thicker, oblong tegument layers. These defects were different from those observed with HSV gD(-)/gE(-)/gI(-) mutants, which accumulated capsids in large, aggregated masses in the cytoplasm. Our results suggest that HSV gB functions in secondary envelopment, apparently acting downstream of gE/gI.  相似文献   

13.
Homologues of the UL7 gene of herpes simplex virus type 1 are conserved in alpha-, beta-, and gammaherpesviruses. However, little is known about their functions. Using a monospecific rabbit antiserum raised against a bacterial fusion protein, we identified the UL7 gene product of the neurotropic alphaherpesvirus pseudorabies virus (PrV). In Western blot analyses of infected cells and purified PrV particles the serum specifically detected a 29-kDa protein, which matches the calculated mass of the 266-amino-acid translation product of PrV UL7. For functional analysis, UL7 was deleted by mutagenesis of an infectious full-length clone of the PrV genome in Escherichia coli. The obtained recombinant PrV-DeltaUL7F was replication competent in rabbit kidney cells, but maximum virus titers were decreased nearly 10-fold and plaque diameters were reduced by ca. 60% compared to wild-type PrV. Electron microscopy of infected cells revealed that in the absence of UL7, formation and nuclear egress of nucleocapsids were not affected, whereas secondary envelopment of cytoplasmic nucleocapsids appeared to be delayed and release of mature virions was less efficient. The observed replication defects were corrected by repair of the viral UL7 gene or by propagation of PrV-DeltaUL7F in UL7-expressing cells. PrV-DeltaUL7F was moderately attenuated in mice. Compared to wild-type virus, mean survival times were prolonged from 2 to 3 days after intranasal infection. However, neuroinvasion and transneuronal spread of PrV were not abolished in the absence of UL7. Thus, UL7 encodes a virion protein of PrV, which plays a role during virion maturation and egress both in vitro and in vivo.  相似文献   

14.
The pseudorabies virus (PrV) proteins UL11, glycoprotein E (gE), and gM are involved in secondary envelopment of tegumented nucleocapsids in the cytoplasm. To assess the relative contributions of these proteins to the envelopment process, virus mutants with deletions of either UL11, gM, or gE as well as two newly constructed mutant viruses with simultaneous deletions of UL11 and gE or of UL11 and gM were analyzed in cell culture for their growth phenotype. We show here that simultaneous deletion of UL11 and gE reduced plaque size in an additive manner over the reduction observed by deletion of only UL11 or gE. However, one-step growth was not further impaired beyond the level of the UL11 deletion mutant. Moreover, in electron microscopic analyses PrV-DeltaUL11/gE exhibited a phenotype similar to that of the UL11 mutant virus. In contrast, plaque formation was virtually abolished by the simultaneous absence of UL11 and gM, and one-step growth was significantly reduced. Electron microscopy showed the presence of huge intracytoplasmic inclusions in PrV-DeltaUL11/gM-infected cells, with a size reaching 3 micro m and containing nucleocapsids embedded in tegument. We hypothesize that UL11 and gM are involved in different steps during secondary envelopment and that simultaneous deletion of both interrupts both processes, resulting in the observed drastic impairment of secondary envelopment.  相似文献   

15.
Herpesvirus envelopment is a two-step process which includes acquisition of a primary envelope resulting from budding of intranuclear capsids through the inner nuclear membrane. Fusion with the outer leaflet of the nuclear membrane releases nucleocapsids into the cytoplasm, which then gain their final envelope by budding into trans-Golgi vesicles. It has been shown that the UL34 gene product is required for primary envelopment of the alphaherpesvirus pseudorabies virus (PrV) (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 74:10063-10073, 2000). For secondary envelopment, several virus-encoded PrV proteins are necessary, including glycoproteins E, I, and M (A. R. Brack, J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). We show here that the product of the UL37 gene of PrV, which is a constituent of mature virions, is involved in secondary envelopment. Replication of a UL37 deletion mutant, PrV-DeltaUL37, was impaired in normal cells; this defect could be complemented on cells stably expressing UL37. Ultrastructural analysis demonstrated that intranuclear capsid maturation and budding of capsids into and release from the perinuclear space were unimpaired. However, secondary envelopment was drastically reduced. Instead, apparently DNA-filled capsids accumulated in the cytoplasm in large aggregates similar to those observed in the absence of glycoproteins E/I and M but lacking the surrounding electron-dense tegument material. Although displaying an ordered structure, capsids did not contact each other directly. We postulate that the UL37 protein is necessary for correct addition of other tegument proteins, which are required for secondary envelopment. In the absence of the UL37 protein, capsids interact with each other through unknown components but do not acquire the electron-dense tegument which is normally found around wild-type capsids during and after secondary envelopment. Thus, apposition of the UL37 protein to cytoplasmic capsids may be crucial for the addition of other tegument proteins, which in turn are able to interact with viral glycoproteins to mediate secondary envelopment.  相似文献   

16.
Herpesvirus Envelopment   总被引:23,自引:20,他引:3  
The growth and envelopment processes of three representative herpesviruses, equine abortion, pseudorabies, and herpes simplex, were examined in baby hamster kidney (BHK 21/13) cells by bioassay (plaque-forming units) and electron microscopy. The envelopment process was identical for all three viruses. After assembly in the nucleus, the nucleocapsid acquired an envelope by budding from the inner nuclear membrane. This membrane was reduplicated as the enveloped particle was released so that the budding process did not result in disruption of the continuity of the nuclear membrane. That portion of the nuclear membrane which comprised the viral envelope was appreciably thicker than the remainder of the membrane and exhibited numerous projections on its surface. Once enveloped, the viral particles were seen in vesicles and vacuoles in the cell cytoplasm. These appeared to open at the cytoplasmic membrane, releasing the virus from the cell. There was no detectable difference in the size or appearance of enveloped particles in intra- or extracellular locations.  相似文献   

17.
Herpesviruses infect cells by fusion of the viral envelope with cellular membranes, primarily the plasma membrane. During this process structural components of the mature virion are lost from the invading nucleocapsid, which then travels along microtubules to the nuclear pore. We examined the penetration process by immunoelectron microscopy and analyzed which of the major tegument proteins remained associated with the incoming capsid. We show that the UL36, UL37, and US3 proteins were present at intracytoplasmic capsids after penetration, whereas the UL11, UL47, UL48, and UL49 tegument proteins were lost. Thus, the three capsid-associated tegument proteins are prime candidates for viral proteins that interact with cellular motor proteins for transport of nucleocapsids to the nucleus.  相似文献   

18.
The pseudorabies virus (PrV) homolog of the tegument protein encoded by the UL48 gene of herpes simplex virus type 1 (HSV-1) was identified by using a monospecific rabbit antiserum against a bacterial fusion protein. UL48-related polypeptides of 53, 55, and 57 kDa were detected in Western blots of infected cells and purified virions. Immunofluorescence studies demonstrated that the PrV UL48 protein is predominantly localized in the cytoplasm but is also found in the nuclei of infected cells. Moreover, it is a constituent of extracellular virus particles but is absent from primary enveloped perinuclear virions. In noncomplementing cells, a UL48-negative PrV mutant (PrV-DeltaUL48) exhibited delayed growth and significantly reduced plaque sizes and virus titers, deficiencies which were corrected in UL48-expressing cells. RNA analyses indicated that, like its HSV-1 homolog, the PrV UL48 protein is involved in regulation of immediate-early gene expression. However, the most salient effect of the UL48 gene deletion was a severe defect in virion morphogenesis. Late after infection, electron microscopy of cells infected with PrV-DeltaUL48 revealed retention of newly formed nucleocapsids in the cytoplasm, whereas enveloped intracytoplasmic or extracellular complete virions were only rarely observed. In contrast, capsidless particles were produced and released in great amounts. Remarkably, the intracytoplasmic capsids were labeled with antibodies against the UL36 and UL37 tegument proteins, whereas the capsidless particles were labeled with antisera directed against the UL46, UL47, and UL49 tegument proteins. These findings suggested that the UL48 protein is involved in linking capsid and future envelope-associated tegument proteins during virion formation. Thus, like its HSV-1 homolog, the UL48 protein of PrV functions in at least two different steps of the viral life cycle. The drastic inhibition of virion formation in the absence of the PrV UL48 protein indicates that it plays an important role in virion morphogenesis prior to secondary envelopment of intracytoplasmic nucleocapsids. However, the UL48 gene of PrV is not absolutely essential, and concomitant deletion of the adjacent tegument protein gene UL49 also did not abolish virus replication in cell culture.  相似文献   

19.
The conserved membrane-associated tegument protein pUL11 and envelope glycoprotein M (gM) are involved in secondary envelopment of herpesvirus nucleocapsids in the cytoplasm. Although deletion of either gene had only moderate effects on replication of the related alphaherpesviruses herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) in cell culture, simultaneous deletion of both genes resulted in a severe impairment in virion morphogenesis of PrV coinciding with the formation of huge inclusions in the cytoplasm containing nucleocapsids embedded in tegument (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 78:3024-3034, 2004). To test whether a similar phenotype occurs in HSV-1, a gM and pUL11 double deletion mutant was generated based on a newly established bacterial artificial chromosome clone of HSV-1 strain KOS. Since gM-negative HSV-1 has not been thoroughly investigated ultrastructurally and different phenotypes have been ascribed to pUL11-negative HSV-1, single gene deletion mutants were also constructed and analyzed. On monkey kidney (Vero) cells, deletion of either pUL11 or gM resulted in ca.-fivefold-reduced titers and 40- to 50%-reduced plaque diameters compared to those of wild-type HSV-1 KOS, while on rabbit kidney (RK13) cells the defects were more pronounced, resulting in ca.-50-fold titer and 70% plaque size reduction for either mutant. Electron microscopy revealed that in the absence of either pUL11 or gM virion formation in the cytoplasm was inhibited, whereas nuclear stages were not visibly affected, which is in line with the phenotypes of corresponding PrV mutants. Simultaneous deletion of pUL11 and gM led to additive growth defects and, in RK13 cells, to the formation of large intracytoplasmic inclusions of capsids and tegument material, comparable to those in PrV-ΔUL11/gM-infected RK13 cells. The defects of HSV-1ΔUL11 and HSV-1ΔUL11/gM could be partially corrected in trans by pUL11 of PrV. Thus, our data indicate that PrV and HSV-1 pUL11 and gM exhibit similar functions in cytoplasmic steps of virion assembly.  相似文献   

20.
In the final stages of the herpes simplex virus 1 (HSV-1) life cycle, a viral nucleocapsid buds into a vesicle of trans-Golgi network (TGN)/endosome origin, acquiring an envelope and an outer vesicular membrane. The virus-containing vesicle then traffics to the plasma membrane where it fuses, exposing a mature virion. Although the process of directed egress has been studied in polarized epithelial cell lines, less work has been done in nonpolarized cell types. In this report, we describe a study of HSV-1 egress as it occurs in nonpolarized cells. The examination of infected Vero cells by electron, confocal, and total internal reflection fluorescence (TIRF) microscopy revealed that HSV-1 was released at specific pocket-like areas of the plasma membrane that were found along the substrate-adherent surface and cell-cell-adherent contacts. Both the membrane composition and cytoskeletal structure of egress sites were found to be modified by infection. The plasma membrane at virion release sites was heavily enriched in viral glycoproteins. Small glycoprotein patches formed early in infection, and virus became associated with these areas as they expanded. Glycoprotein-rich areas formed independently from virion trafficking as confirmed by the use of a UL25 mutant with a defect in capsid nuclear egress. The depolymerization of the cytoskeleton indicated that microtubules were important for the trafficking of virions and glycoproteins to release sites. In addition, the actin cytoskeleton was found to be necessary for maintaining the integrity of egress sites. When actin was depolymerized, the glycoprotein concentrations dispersed across the membrane, as did the surface-associated virus. Lastly, viral glycoprotein E appeared to function in a different manner in nonpolarized cells compared to previous studies of egress in polarized epithelial cells; the total amount of virus released at egress sites was slightly increased in infected Vero cells when gE was absent. However, gE was important for egress site formation, as Vero cells infected with gE deletion mutants formed glycoprotein patches that were significantly reduced in size. The results of this study are interpreted to indicate that the egress of HSV-1 in Vero cells is directed to virally induced, specialized egress sites that form along specific areas of the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号