首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cochliobolus heterostrophus Pol2 and Pol5 mutants are pleiotropic, and each mutant gene is responsible for alterations of both unrelated phenotypes: reddish-brown pigmentation and polyoxin resistance. The three pigments accumulated in these mutants were isolated. Structural characterization by spectroscopic analyses indicated that these three pigments were polyhydroxyanthraquinones: emodin, chrysophanol, and citreorosein. Emodin is known to be an antidote against benzimidazole fungicide, although no antidoting activity against polyoxin was observed. Received: February 12, 2002 / Accepted: April 27, 2002  相似文献   

2.
To develop a dominant genetic marker inPleurotus ostreatus, mutant strains resistant to a carboxin-derived fungicide, flutolanil, were isolated. These mutants included strains which showed resistance to 50-fold higher concentration of fluotolanil than the wild-type strain, even after successive cultivations in the absence of the drug. Dominance of the phenotype was confirmed by back-crossing between the resistant and wild-type monokaryons. The flutolanilresistance was also shown to be stably inherited by the basidiospore-derived progenies of the mutant strains.  相似文献   

3.
In the southern corn blight fungus, Bipolaris maydis, five polyoxin-resistance genes (Pol1 to Pol5) have been reported. Pol2 and Pol5 are pleiotropic for not only polyoxin resistance but also reddish brown colonies. Here, we used a comparative genomics approach to identify Pol2 and Pol5 at a molecular genetics level. Our analysis revealed that nucleotide sequence variations in the genes for hydroxymethylbilane synthase (HMBS) and ferrochelatase (FECH) were linked to the phenotypes of Pol2 and Pol5, respectively. Further variations in the nucleotide sequences of these genes were also found in other strains of Pol2 and Pol5. Complementation tests with the wild type genes confirmed that these mutations at Hmbs and Fech were responsible for the polyoxin resistance in the Pol2 and Pol5 mutants. The deletion mutants of these genes (ΔHMBS and ΔFECH) were conditionally lethal without exogenous heme. The heme contents of Pol2 and Pol5 mutants were lower than that in the wild type, suggesting that the mutations in hmbs and fech reduced the functions of HMBS and FECH, although neither was completely inactivated. These results suggested Pol2 and Pol5 encode HMBS and FECH, members of enzymes in the heme-biosynthetic pathway of this fungus.  相似文献   

4.
Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the wild type circadian system. Differences between these mutant strains have inspired the hypothesis that the duality of circadian genes (two mPer and two mCry genes involved) is related to the existence of two components in the circadian oscillator (Daan et al., J Biol Rhythms 16:105–116, 2001). We tested the predictions from this theory that the circadian period (τ) lengthens under constant illumination (LL) in mCry1 and mPer1 mutant mice, while it shortens in mCry2 and mPer2 mutants. mCry1 −/− and mCry2 −/− knockout mice both consistently increased τ with increasing light intensity, as did wild type mice. With increasing illumination, rhythmicity is reduced in mCry1, mCry2 and mPer1, but not in mPer2 deficient mice. Results for mPer mutant mice are in agreement with data reported on these strains earlier by Steinlechner et al. (J Biol Rhythms 17:202–209, 2002), and also with the predictions from the model. The increase in cycle length of the circadian system by light in the mCry2 deficient mice violates the predictions. The model is thereby rejected: the mCry genes do not play a differential role, although the opposite responses of mPer mutants to light remain consistent with a functional Evening–Morning differentiation.  相似文献   

5.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

6.
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.  相似文献   

7.
Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations. Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly, were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%. Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions. By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted from two mutations in different genes, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
In Escherichia coli cellular levels of pppGpp and ppGpp, collectively called (p)ppGpp, are maintained by the products of two genes, relA and spoT. Like E. coli, Vibrio cholerae also possesses relA and spoT genes. Here we show that similar to E. coli, V. cholerae ΔrelA cells can accumulate (p)ppGpp upon carbon starvation but not under amino acid starved condition. Although like in E. coli, the spoT gene function was found to be essential in V. cholerae relA + background, but unlike E. coli, several V. cholerae ΔrelA ΔspoT mutants constructed in this study accumulated (p)ppGpp under glucose starvation. The results suggest a cryptic source of (p)ppGpp synthesis in V. cholerae, which is induced upon glucose starvation. Again, unlike E. coli ΔrelA ΔspoT mutant (ppGpp0 strain), the V. cholerae ΔrelA ΔspoT mutants showed certain unusual phenotypes, which are (a) resistance towards 3-amino-1,2,4-triazole (AT); (b) growth in nutrient poor M9 minimal medium; (c) ability to stringently regulate cellular rRNA accumulation under glucose starvation and (d) initial growth defect in nutrient rich medium. Since these phenotypes of ΔrelA ΔspoT mutants could be reverted back to ΔrelA phenotypes by providing SpoT in trans, it appears that the spoT gene function is crucial in V. cholerae. Part of this work was presented at the International Symposium on Chemical Biology, Kolkata, India, 7–9 March 2007.  相似文献   

9.
The sexually compatible strains ofCoprinus cinereus 5302 and Dd 13 revealed chromosome length polymorphisms in their electrophoretic karyotypes. The dikaryon derived from two monokaryons contained a mixture of the two electrophoretic patterns. F1 progenies were isolated by crossingC. cinereus 5302 and Dd 13 strains and it showed unique karyotypes. Chromosome length polymorphisms of both parental strains were inherited at random in the F1 progenies. As a result, several novel electrophoretic karyotypes which had not been observed in either parental strains were found in the F1 progeny. The rDNA probe hybridized with one chromosome in both parental strains, with two chromosomes in the hybridization pattern of both parental strains in the dikaryon, and with one to two chromosomes in the F1 progenies. The relation between mating type and hybridization pattern has thus not been made clear in the case of F1 progeny.  相似文献   

10.
Since the initial discovery of Xanthomonas perforans on tomato in 1991, it has completely displaced Xanthomonas euvesicatoria as the bacterial spot of tomato pathogen in Florida. Previous research has shown that X. perforans produces at least three different bacteriocin-like compounds (BcnA, BcnB, BcnC) antagonistic toward X. euvesicatoria strains. In this study pathogenicity-attenuated, bacteriocin-producing mutants of X. perforans were created to determine their potential as biological control agents for control of X. euvesicatoria. Several candidate genes were chosen based on previous studies in which mutant phenotypes exhibited reduced virulence in either X. perforans (OpgHXcv) or the closely related X. euvesicatoria strain 85-10 (hpaB, hpaC, xopA, xopD, avrBs2 and gumD). Each candidate gene in X. perforans was amplified and PCR-assisted deletion mutagenesis was performed in the wild-type (wt) X. perforans strain to create potential attenuation mutants. Each mutant was tested for growth rate, disease severity and antagonism toward X. euvesicatoria strains. Three mutants, XopA, opgH, and gumD were significantly less pathogenic than the wild-type strain with the opgH mutant reaching significantly lower internal populations than all other mutants except hpaC. The opgH-strain was the most affected in its ability to grow internally in plant tissue while inhibiting X. euvesicatoria populations equal to or more than the other mutant strains. This mutant strain could potentially be used as part of an effective biological control strategy.  相似文献   

11.
Du XZ  Ge XH  Zhao ZG  Li ZY 《Plant cell reports》2008,27(2):261-271
The intertribal sexual hybrids between three Brassica napus (2n = 38) cultivars and Lesquerella fendleri (2n = 12) with the latter as pollen parent were obtained and characterized for their phenotypes and chromosomal and genomic constitutions. F1 plants and their progenies mainly resembled female B. napus parents, while certain characters of L. fendleri were expressed in some plants, such as longer flowering period, basal clustering stems and particularly the glutinous layer on seed coats related to drought tolerance. Twenty-seven F1 plants were cytologically classified into five types: type I (16 plants) had 2n = 38, type II (2) had 2n = 38–42, type III (3) had 2n = 31–38, type IV (5) had 2n = 25–31, and type V (1) had 2n = 19–22. Some hybrids and their progenies were mixoploids in nature with only 1–2 chromosomes or some chromosomal fragments of L. fendleri included in their cells. AFLP (Amplified fragments length polymorphism) analysis revealed that bands absent in B. napus, novel for two parents and specific for L. fendleri appeared in all F1 plants and their progenies. Some progenies had the modified fatty acid profiles with higher levels of linoleic, linolenic, eicosanoic and erucic acids than those of B. napus parents. The occurrence of these partial hybrids with phenotypes, genomic and fatty acid alterations resulted possibly from the chromosome elimination and doubling accompanied by the introgression of alien DNA segments and genomic reorganization. The progenies with some useful traits from L. fendleri should be new and valuable resource for rapeseed breeding.  相似文献   

12.
Sordaria macrospora is a homothallic ascomycete which is able to form fertile fruiting bodies without a mating partner. To analyze the molecular basis of homothallism and the role of mating products during fruiting body development, we have deleted the mating type gene Smta-1 encoding a high-mobility group domain (HMG) protein. The ΔSmta-1 deletion strain is morphologically wild type during vegetative growth, but it is unable to produce perithecia or ascospores. To identify genes expressed under control of Smta-1, we performed a cross-species microarray analysis using Neurospora crassa cDNA microarrays hybridized with S. macrospora targets. We identified 107 genes that are more than twofold up- or down-regulated in the mutant. Functional classification revealed that 81 genes have homologues with known or putative functions. Comparison of array data from ΔSmta-1 with those from three phenotypically similar mutants revealed that only a limited set of ten genes is deregulated in all mutants. Remarkably, the ppg2 gene encoding a putative lipopeptide pheromone is 500-fold down-regulated in the ΔSmta-1 mutant while in all other sterile mutants this gene is up-regulated. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
TheSaccharomyces cerevisiae killer toxin K1 is a secreted α/β-heterodimeric protein toxin that kills sensitive yeast cells in a receptor-mediated two-stage process. The first step involves toxin binding to β-1,6-d-glucan-components of the outer yeast cell surface; this step is blocked in yeast mutants bearing nuclear mutations in any of theKRE genes whose products are involved in synthesis and/or assembly of cell wall β-d-glucans. After binding to the yeast cell wall, the killer toxin is transferred to the cytoplasmic membrane, subsequently leading to cell death by forming lethal ion channels. In an attempt to identify a secondary K1 toxin receptor at the plasma membrane level, we mutagenized sensitive yeast strains and isolated killer-resistant (kre) mutants that were resistant as spheroplasts. Classical yeast genetics and successive back-crossings to sensitive wild-type strain indicated that this toxin resistance is due to mutation(s) in a single chromosomal yeast gene (KRE12), renderingkrel2 mutants incapable of binding significant amounts of toxin to the membrane. Sincekrel2 mutants showed normal toxin binding to the cell wall, but markedly reduced membrane binding, we isolated and purified cytoplasmic membranes from akrel2 mutant and from an isogenicKre12+ strain and analyzed the membrane protein patterns by 2D-electrophoresis using a combination of isoelectric focusing and SDS-PAGE. Using this technique, three different proteins (or subunits of a single multimeric protein) were identified that were present in much lower amounts in thekre12 mutant. A model for K1 killer toxin action is presented in which the gene product ofKRE12 functions in vivo as a K1 docking protein, facilitating toxin binding to the membrane and subsequent ion channel formation.  相似文献   

14.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   

15.
A gene for a putative two-component histidine kinase, which is homologous to os-1 from Neurospora crassa, was cloned and sequenced from the plant-pathogenic fungus Cochliobolus heterostrophus. The predicted protein possessed the conserved histidine kinase domain, the response regulator domain, and six tandem repeats of 92-amino-acids at the N-terminal end that are found in histidine kinases from other filamentous fungi. Introduction of the histidine kinase gene complemented the deficiency of the C. heterostrophus dic1 mutant, suggesting that the Dic1 gene product is a histidine kinase. Dic1 mutants are resistant to dicarboximide and phenylpyrrole fungicides, and they are sensitive to osmotic stress. We previously classified dic1 alleles into three types, based on their phenotypes. To explain the phenotypic differences among the dic1 mutant alleles, we cloned and sequenced the mutant dic1 genes and compared their sequences with that of the wild-type strain. Null mutants for Dic1, and mutants with a deletion or point mutation in the N-terminal repeat region, were highly sensitive to osmotic stress and highly resistant to both fungicides. A single amino acid change within the kinase domain or the regulator domain altered the sensitivity to osmotic stress and conferred moderate resistance to the fungicides. These results suggest that this predicted protein, especially its repeat region, has an important function in osmotic adaptation and fungicide resistance.Communicated by C. A. M. J. J. van den Hondel  相似文献   

16.
The sensitivity of two cold-tolerant Trichoderma strains belonging to the species T. harzianum and T.␣atroviride was determined to a series of pesticides widely used in agriculture. From the 16 pesticides tested, seven fungicides: copper sulfate, carbendazim, mancozeb, tebuconazole, imazalil, captan and thiram inhibited colony growth of the test strains significantly with minimal inhibitory concentrations of 300, 0.4, 50, 100, 100, 100 and 50 g/ml, respectively. Mutants resistant to carbendazim and tebuconazole were produced from both wild type strains by means of UV-mutagenesis. The cross-resistance capabilities and in␣vitro antagonistic properties of the mutants were determined. Carbendazim-resistant mutants showed total cross-resistance to benomyl and thiabendazole at a concentration of 20 g/ml. Intraspecific protoplast fusion was carried out between carbendazim- and tebuconazole-resistant mutants of both parental strains, and putative haploid recombinants with stable resistance to both pesticides were produced in the case of T.␣atroviride. These pesticide-polyresistant progenies are potential candidates for application in an integrated pest management system.This work was presented as an oral lecture in section ‘Agriculture, Soil, Forest Microbiology’ at the BioMicroWorld2005 conference.  相似文献   

17.
Summary Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding.  相似文献   

18.
以拟南芥(Arabidopsis thaliana)为研究材料,从T-DNA突变体库中筛选分离得到1株脱落酸(ABA)敏感突变体asm1(ABA sensitive mutant 1,asm1),在含有ABA的培养基中,与野生型相比,asm1突变体的根伸长明显受到抑制,且其种子萌发结果显示asm1对ABA同样表现出敏感特性。在生长发育方面,asm1突变体抽苔时间提前,植株矮化,并且荚果长度明显小于野生型。利用远红外成像系统分析发现,在干旱胁迫下asm1突变体叶面温度高于野生型;失水率分析显示突变体失水率降低以及水分散失减少。遗传学分析表明,asm1是单基因隐性突变且与一个T-DNA插入共分离;通过图位克隆成功获得候选基因ASM1。RT-PCR结果显示,在突变体中ASM1的表达受到抑制,并且能够调控多种ABA信号通路和胁迫应答基因的表达水平。研究结果表明,ASM1可能参与调控ABA信号转导并应答干旱胁迫。  相似文献   

19.
[背景]棉花枯萎病逐渐成为威胁新疆海岛棉产业发展的主要病害,但关于棉花枯萎病菌的致病力、产孢量、生长速度及颜色变化等相关功能基因目前还不是十分明确.[目的]通过构建绿色荧光蛋白(green fluorescent protein,GFP)标记棉花枯萎病菌突变体库,筛选出由于T-DNA的随机插入而导致性状发生变异的突变体...  相似文献   

20.
Summary Chlorsulfuron and/or imazaquin resistant mutants of Chlamydomonas reinhardtii strain CW15 have been obtained and shown to have actolactate synthase (ALS) with altered sensitivity to one or both of these herbicides. Herbicide resistance in the three mutants described is allelic, and resistance appears to result from a dominant or semidominant mutation in a single, nuclear gene. Imazaquin and chlorsulfuron resistant ALS from imazaquin and chlorsulfuron resistant mutants, together with single-gene Mendelian inheritance of these phenotypes, suggests that ALS is the sole site of action of the two herbicides in Chlamydomonas. A high degree of cross resistance between the two herbicides was found in only one mutant. This mutant (IM-13) was selected for resistance to imazaquin and has a high level of in vitro resistance to both imazaquin (270-fold increased I50) and chlorsulfuron (900-fold increased I50). In another mutant selected for resistance to imazaquin (IMR-2), hyper-sensitivity to chlorsulfuron was found. A mutant selected for resistance to chlorsulfuron (CSR-5), had a substantial degree of resistance of chlorsulfuron (80-fold increased I50), but not to imazaquin (7-fold increased I50).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号