首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Fluorouracil-cisplatin adducts with potential antitumor activity   总被引:1,自引:0,他引:1  
Using 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum(II) (cisplatin, CDDP) as starting compounds, 5-FU-cisplatin adducts cis-[Pt(NH(3))(2)(HFU)Cl] (1) and cis-[Pt(NH(3))(2)(HFU)(2)] (2) were prepared. The obtained complexes were characterized by IR, ES-MS and 1H NMR spectroscopy. Complex 1 reacted with guanosine-5'-monophosphate (5'-GMP) and gave rise to a stable mixed-ligand complex cis-[Pt(NH(3))(2)(HFU)(GMP)] (3), whereas 2 did not undergo a similar reaction. In vitro cell growth inhibition tests of complexes 1 and 2 exhibited moderate antitumor activities against the melanoma B16-BL6 cell line. This work provides the basis for a potential alternative for the combinational use of 5-FU and CDDP in cancer therapy.  相似文献   

2.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

3.
The reactions of Pt(II) complexes, cis-[Pt(NH3)2Cl2], [Pt(terpy)Cl]+, [Pt(terpy)(S-cys)]2+, and [Pt(terpy)(N7-guo)]2+, where terpy=2,2':6',2'-terpyridine, S-cys=L-cysteine, and N7-guo=guanosine, with some biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), L-cysteine, glutathione (GSH) and some strong sulfur-containing nucleophiles such as diethyldithiocarbamate (dedtc), thiosulfate (sts), and thiourea (tu), were studied in aqueous 0.1 M Hepes at pH of 7.4 using UV-vis, stopped-flow spectrophotometry, and 1H NMR spectroscopy.  相似文献   

4.
Kinetic studies on cis-[Pt(NH3)2(OH2)2]2+ and various nucleobases show that this ion reacts more quickly with guanosine than with adenosine, cytidine, and thymidine, and that a monophosphoric acid unit considerably enhances the rate of reaction of guanosine; the kinetic preference of 5'-GMP over 5'-AMP may point to a greater thermodynamic selectivity.  相似文献   

5.
The pH- and time-dependent reaction of the anticancer drug carboplatin, [Pt(cbdca-kappa(2)O,O')(NH(3))(2)] (cbdca=cyclobutane-1,1-dicarboxylate), with the tripeptides H-glyglymet-OH (glycylglycyl-L-methionine) and Ac-glyglymet-OH at 313 K was investigated by high-performance liquid chromatography, NMR and mass spectrometry. The relative stability of the initial ring-opened kappaS complex [Pt(cbdca-kappaO)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] leads to increased formation of the kinetically favoured kappaS:kappaS' bis-adduct [Pt(Ac-glyglymet-OH-kappaS)(2)(NH(3))(2)](2+) in comparison with cisplatin. As a result a second 1:2 reaction pathway kappaS-->kappaS:kappaS'-->kappa(2)N(M), S:kappaS'-->kappa(3)N(G2),N(M), S:kappaS', where N(M) and N(G2) represent, respectively, metallated methionine and glycine nitrogen atoms, competes with the 1:1 route kappaS-->kappa(2)N(M), S-->kappa(3)N(G2),N(M), S also observed for cisplatin. Cleavage of N-acetylglycine at the backbone C(O)-N bond to the second gly residue (G2) is observed after 100 h for the respective tridentate complexes [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S) (Ac-glyglymet-OH-kappaS)] and [Pt(Ac-glyglyH(-1)metH(-1)-OH-kappa(3)N(G2),N(M), S)(NH(3))] at pH <5.2. The longevity of the initial kappaS complex leads to about an eight-fold increase in the rate of formation of the kappaN7:kappaN7' bis-adduct [Pt(5'-GMP-kappaN7)(2)(NH(3))(2)](2-) for the reaction of carboplatin with 5'-GMP(2-) at pH 7 in the presence of Ac-glyglymet-OH. A mixed-ligand kappaS:kappaN7 species [Pt(5'-GMP-kappaN7)(Ac-glyglymet-OH-kappaS)(NH(3))(2)] provides the major precursor for this 1:2 nucleotide complex and kappaN7 coordination of 5'-GMP(2-) is also observed in the kappa(2)N(M),S:kappaN7 complex [Pt(5'-GMP-kappaN7)(Ac-glyglymetH(-1)-OH-kappa(2)N(M),S)(NH(3))(2)](-) formed by substitution of the ammine ligand trans to the methionine sulphur. As the intermediate kappaS:kappaN7 species is formed rapidly within the first 10 h of reaction, these results suggest that the transfer reaction pathway kappaS-->kappaS:kappaN7-->kappaN7:kappaN7' involving kappaS platinated peptides could play an important role in accelerating the rate of DNA binding for carboplatin.  相似文献   

6.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

7.
Replacement of one of the chloride leaving groups in trans-[PtCl2(NH3)(L)] by the nucleobase 9-ethylguanine gives the nucleobase cations [SP-4-2]-[PtCl(9-ethylguanine)(NH3)(L)]+ (L = NH3, 1; L = quinoline, 3), which are models for the monofunctional adduct on DNA. Displacement of Cl- in 1 and 3 by either 5'-guanosine monophosphate (5'-GMP) or N-acetyl-L-methionine (N-AcMet) showed clear kinetic preference for the sulfur (estimated half-lives of 1.5 and 4 h with N-AcMet against 7 and 17 h for 5'-GMP for 1 and 3, respectively). To further examine the kinetic preference, 1-methylcytosine (1-MeCyt) analogs were prepared, [SP-4-2]-[PtCl(1-Me-Cyt)(NH3)(L)]+ (L=NH3, 2; L=quinoline, 4). The -MeCyt compounds, 2 and 4, resulted in slower rates of substitution by both 5'-GMP and N-AcMet in comparison to 1 and 3 (estimated half-lives for N-AcMet of 5 and 13.5 h and for 5'-GMP of 6 and 14 h for 2 and 4, respectively). Interestingly in this case, however, no selectivity for the sulfur site was observed, a possible explanation being that molecular recognition across the square plane enhances the rate of reaction with 5'-GMP. The affinity of 3 towards S-donor ligands was exploited to remove zinc from the zinc-finger site of the C-terminal finger of the HIV-nucleocapsid protein, NCp7. The ability to eject zinc further suggested the biological antiviral application of [SP-4-2]-[PtCl(nucleobase)(NH3)(L)]+. A preliminary survey against HIV and herpes viruses indeed showed encouraging results with some antiviral specificity, dependent on the exact nature of the compound. The initial results suggest consideration of [SP-4-2]-[PtCl(nucleobase)(NH3)(L)]+ as a novel antiviral chemotype.  相似文献   

8.
A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, Kd, of the protein from cisplatin-modified DNA was estimated to be (1-20) X 10(-10) M. Protein binding is selective for DNA modified with cisplatin, [Pt(en)Cl2] (en, ethylenediamine), and [Pt(dach)Cl2] (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating [Pt(dien)Cl]Cl (dien, diethylenetriamine) complexes. The protein also does not bind to DNA containing UV-induced photoproducts. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin, as determined by gel mobility shifts with synthetic 110-bp duplex oligonucleotides; these modified oligomers contained five equally spaced adducts of either cis-[Pt(NH3)2d(GpG) or cis-[Pt(NH3)2d(ApG)]. Oligonucleotides containing the specific adducts cis-[Pt(NH3)2d(GpTpG)], trans-[Pt(NH3)2d(GpTpG)], or cis-[Pt(NH3)2(N3-cytosine)d(G)] were not recognized by the protein. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl2, CdCl2, CoCl2, or ZnCl2 and with 1 mM HgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The results presented describe the effects of various spectator ligands, attached to a platinum 1,2-intrastand d(GpG) cross-link in duplex DNA, on the binding of high mobility group box (HMGB) domains and the TATA-binding protein (TBP). In addition to cisplatin-modified DNA, 15-base pair DNA probes modified by [Pt(1R,2R-diaminocyclohexane)](2+), cis-[Pt(NH(3))(cyclohexylamine)](2+), [Pt(ethylenediamine)](2+), cis-[Pt(NH(3))(cyclobutylamine)](2+), and cis-[Pt(NH(3))(2-picoline)](2+) were examined. Electrophoretic mobility shift assays show that both the A and B domains of HMGB1 as well as TBP discriminate between different platinum-DNA adducts. HMGB1 domain A is the most sensitive to the nature of the spectator ligands on platinum. The effect of the spectator ligands on protein binding also depends highly on the base pairs flanking the platinated d(GpG) site. Double-stranded oligonucleotides containing the AG*G*C sequence, where the asterisks denote the sites of platination, with different spectator ligands are only moderately discriminated by the HMGB proteins and TBP, but the recognition of dsTG*G*A is highly dependent on the ligands. The effects of HMGB1 overexpression in a BG-1 ovarian cancer cell line, induced by steroid hormones, on the sensitivity of cells treated with [Pt(1R,2R-diaminocyclohexane)Cl(2)] and cis-[Pt(NH(3))(cyclohexylamine)Cl(2)] were also examined. The results suggest that HMGB1 protein levels influence the cellular processing of cis-[Pt(NH(3))- (cyclohexylamine)](2+), but not [Pt((1R,2R)-diaminocyclohexane)](2+), DNA lesions. This result is consistent with the observed binding of HMGB1a to platinum-modified dsTG*G*A probes but not with the binding affinity of HMGB1a and HMGB1 to platinum-damaged dsAG*G*C oligonucleotides. These experiments reinforce the importance of sequence context in platinum-DNA lesion recognition by cellular proteins.  相似文献   

10.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

11.
The reactions of cis-[PtCl(NH3)2(H2O)]+ with L-methionine have been studied by 1D 195Pt and 15N NMR, and by 2D[1H, 15N] NMR. When the platinum complex is in excess, the initial product, cis-[PtCl(NH3)2(Hmet-S)]+ undergoes slow ring closure to [Pt(NH3)2(Hmet-N,S)]2+. Slow ammine loss then occurs to give the isomer of [PtCl(NH3)(Hmet-N,S)]+ with chloride trans to sulfur. When methionine is in excess, a reaction sequence is proposed in which trans-[PtCl(NH3)(Hmet-S)2]+ isomerises to the cis-isomer, with subsequent ring closure reactions leading to cis-[Pt(Hmet-N,S)2]2+. Near pH 7, methionine is unreactive toward cis-[PtCl(OH)(NH3)2]. By contrast, L-cysteine reacts readily with cis-[PtCl(OH)(NH3)2] at pH 7, but there were many reaction products, including bridged species. Cis-[PtCl(OH)(NH3)2] reacts with reduced thiols in ultrafiltered plasma but these are oxidized if the plasma is not fresh or appropriately stored. With very low concentrations of the platinum complexes (35.5 microM), HPLC experiments (UV detection at 305 nm) indicate that the thiolate (probably cysteine) reactions become simpler as bridging becomes less important.  相似文献   

12.
A series of new platinum(II) amine complexes containing 1,1- and 1,2-cyclobutanedicarboxylate ligands, cis-[PtA2(1,1-CBDCA)] (A = RNH2, where R = C2H5, n-C3H7, n-C4H9, n-C5H11, n-C6H13, c-C3H5, c-C5H9, c-C6H11; A2 = ethylenediamine, 1,3-diaminopropane), cis-[PtA2(1,2-CBDCA)] (A = NH3, RNH2 where R = CH3, C2H5, n-C3H7, n-C4H9, c-C3H5) and trans-[Pt(NH3)2(1,1-CBDCAH)2] (CBDCA, CBDCAH = dianion and monoanion of the dicarboxylic acid, respectively) have been synthesized by an improved route. These complexes are stable in aqueous solution and show good aqueous solubility. The [Pt(c-C3H5NH2)2(1,1-CBDCA)] can be isolated in white, grey and blue forms. The grey and blue forms exhibit ESR signals analogous to the so-called platinum blues. The existence of the blue form in aqueous solution is time and temperature dependent. Several of the complexes have been tested against leukaemia L1210 in male BDF mice and activity appears to decrease with the increase in length of the aliphatic chain (or increase in size of the alicyclic ring) of the primary amine. The Yoshida lymphoscarcoma screen, usually insensitive to platinum drugs, was found to respond well to [Pt(n-C4H9NH2)2(1,1-CBDCA)] in 5-day subcutaneously implanted tumours in female Wistar rats.  相似文献   

13.
The optical properties of the DNA complexes with divalent platinum compounds of the cis-diamine type differing both in the nature of anionic and neutral ligands and in the spatial arrangement about the platinum atom were studied. The platinum compounds cis-[Pt(NH3)2Cl2], [Pt(en)Cl2], [Pt(tetrameen)Cl2], cis-[Pt(NH3)2NO2Cl], and cis-[PtNH3(Bz)Cl2] at small values of r (r is the molar ratio of a platinum compound to DNA nucleotides in the reaction mixture) were found to induce an increase in the amplitude of the positive band in the circular dichroic (CD) spectrum of linear DNA. All the compounds listed except cis-[Pt(NH3)2NO2Cl] caused a sharp decrease of the amplitude of the negative band in the CD spectrum of a liquid crystalline microphase of DNA formed in solution in the presence of poly(ethylene glycol). All these platinum compounds (except [Pt(tetrameen)Cl2]) exhibit biological (antimitotic, antitumour, etc.) activity. The platinum compounds trans-[Pt(NH3)Cl2], trans-[Pt(NH3)2NO2Cl], cis-[PtNH3PyCl2], cis-[Pt(NH3)2(NO2)2], and [Pt(NH3)3Cl]Cl exhibiting a low (if any) biological activity, either induced a decrease of the amplitude of the positive band in the CD spectrum of linear DNA, or did not affect the CD spectrum at all. The effect of these platinum compounds on the CD spectrum of the liquid crystalline microphase of DNA was either weak or absent. It is assumed that the specific biological action of platinum compounds of the cis-diamine type is determined by the polydentate binding to DNA: in addition to the cis-bidentate covalent binding of platinum to DNA nitrogen bases, a hydrogen bond formation between the DNA and cis-amino ligands occurs by means of protons at nitrogen atoms.  相似文献   

14.
Three complexes containing the novel, sterically hindered ligand 6-(methylpyridin-2-yl)acetate (PICAC) have been synthesized and characterized: [Pt(NH3)2(PICAC-N,O)]NO3 (1), [Pt(en)(PICAC-N,O)]NO3 (2), and [Pd(en)(PICAC-N,O)]NO3 (3) (en = ethane-1,2-diamine). The crystal structures of 2 and 3 have been determined. The two complexes are isostructural and exhibit a mixed [N3O] coordination. In both cases, PICAC forms a sterically crowded six-membered chelate. Signal multiplicities in 1H NMR spectra of 1-3 indicate that the N,O chelates are conformationally rigid on the NMR timescale as a result of the steric bulk of the pyridine derivative. Complex 2 undergoes facile ring opening in 0.1M NaCl solution at neutral pH, resulting in a zwitterionic species in which carboxylate oxygen has been replaced with chloride. The complex was identified by X-ray crystallography as [PtCl(en)(PICAC-N)] x H2O (4), which contains a "dangling" carboxylate group. In 4, the pyridine moiety adopts an almost perpendicular orientation relative to the platinum coordination plane. Likewise, complex 2 reacts rapidly with 5'-guanosine monophosphate (5'-GMP) to form the monofunctional adduct [Pt(en)(PICAC)(5'-GMP)] (5) (NMR, 25 degrees C, t(1/2) approximately 24 min). 2-D nuclear Overhauser enhancement spectroscopy (NOESY) and double quantum-filtered correlated spectroscopy (dqf-COSY) experiments (500 MHz) and variable temperature NMR spectroscopy confirm that adduct 5 exists as a 1:1 mixture of rotamers in solution as a result of the mutual repulsion between the cis-oriented pyridine and guanine bases. While 2 readily reacts with DNA nitrogen, its monofunctional adducts show no significant effect on the conformation of native DNA. Circular dichroism (CD) spectra recorded of platinum-modified calf-thymus DNA suggest that the structural damage produced by complex 2 does not mimic that produced by the clinical agent. Both the unusual reactivity and the inability to induce cisplatin-like DNA conformational changes are proposed to be responsible for the marginal biological activity of the new complexes.  相似文献   

15.
6-methylated guanine dinucleotides were used to study the influence of hydrogen bonding on the specific binding of the antitumor drug cDDP, cis-PtCl2(NH3)2, to DNA. In this interaction, the guanine-06 site appears to be important in explaining the preference for a pGpG-N7(1),N7(2) chelate, which results from H-bridge formation with the ammine ligand of cDDP. Guanine-06 methylated dinucleotides and the nonmodified dinucleotides were reacted with [Pt(dien)Cl]+, cis-PtCl2(NH3)2, and cis-[Pt(NH3)2(H2O)2]2+ and the reaction products were characterized by 1H NMR using pH titrations. Methylation at guanine-06 clearly reduces the preference for the guanine. In competition experiments monitored by NMR and experiments using UV spectrophotometry a decreasing reactivity towards [Pt(dien)(H2O)]2+ and cis-[Pt(NH3)2(H2O)2]2+ was found, in the order of d(GpG) greater than d(GomepG) greater than d(GpGome) greater than d(GomepGome). The difference in reactivity between 5' guanine methylation and 3' guanine methylation is ascribed to differences in the H-bond formation with the backbone phosphate. The resulting reduced stacking of the bases in both modified dinucleotides, compared to the bases in d(GpG), results in a preference for the 3' guanine over 5'.  相似文献   

16.
Reactions of cis- and trans-[PtCl2(NH3)2] with glutathione (GSH) inside intact red blood cells have been studied by 1H spin-echo nuclear magnetic resonance (NMR). Upon addition of trans-[PtCl2(NH3)2] to a suspension of red cells, there was a gradual decrease in the intensity of the resonances for free GSH, and new peaks were observed that were assignable to coordinated GSH protons in trans-[Pt(SG)Cl(NH3)2], trans-[Pt(SG)2(NH3)2], and possibly the S-bridged complex trans-[[NH3)2PtCl)2SG]+. Formation of trans-[Pt(SG)2(NH3)2] inside the cell was confirmed from the 1H NMR spectrum of hemolyzed cells, which were ultrafiltered to remove large protein molecules; the ABM multiplet of the coordinated GSH cys-beta CH2 protons was resolved using selective-decoupling experiments. Seventy percent of the total intracellular GSH was retained by the ultrafiltration membrane, suggesting that the mixed complex trans-[Pt(SG)(S-hemoglobin)(NH3)2] also is a major metabolite of trans-[PtCl2(NH3)2] inside red cells. The reaction of cis-[PtCl2(NH3)2] with intracellular GSH was slower; only 35% of the GSH had been complexed after a 4-hr incubation compared to 70% for the trans isomer. There was a gradual decrease in the intensity of the GSH 1H spin-echo NMR resonances, but no new peaks were resolved. This was interpreted as formation of high-molecular weight Pt:GSH and mixed GS-Pt-S(hemoglobin) polymers. By using a 15N-[1H] DEPT pulse sequence, we were able to study the reaction of cis-[PtCl2(15NH3)2] with red cells at concentrations as low as 1 mM. 15NH3 ligands were released, and no resonances assignable to Pt-15NH3 species were observed after a 12-hr incubation.  相似文献   

17.
We prepared liposomes by hydrating 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid with aqueous solutions of three "probe" molecules-cis-diamminedichloroplatinum(II) (cis-[Pt(II)(NH(3))(2)Cl(2)], cisplatin), guanosine 5'-monophosphate (5'-GMP), and 9-ethylguanine (9-EtG)-in phosphate-buffered saline as well as N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The positively charged hydrolysis product of cisplatin, [Pt(II)(NH(3))(2)Cl(H(2)O)](+), is in the inner core of the liposomes and negatively charged 5'-GMP embeds in the lipid bilayer of liposomes. In the presence of cisplatin, the size of the liposomes remains unchanged, and for 5'-GMP-embedded liposomes the size increases significantly compared with that of empty or control liposomes. In contrast, the neutral biomolecule 9-EtG was found to be dispersed in the exterior bulk water and the size of the liposomes remained the same as that of empty or control liposomes. When cisplatin-containing liposomes mix with 5'-GMP-embedded liposomes or liposomes with 9-EtG, the N7 nitrogen atom of 5'-GMP or 9-EtG binds the cisplatin, thus replacing the "leaving groups" and forming a bisadduct. After 48?h of mixing, the size of the liposomes changes for the mixture of 5'-GMP-embedded liposomes and cisplatin-containing liposomes. We used (1)H and (31)P NMR spectroscopic techniques to monitor incorporation or association of cisplatin and biomolecules with liposomes and their subsequent reactions with each other. The dynamic light scattering technique provided the size distribution of the liposomes in the presence and absence of probe molecules.  相似文献   

18.
A duplex Escherichia coli bacteriophage M13 genome was constructed containing a single cis-[Pt(NH3)2(d(GpG]] intrastrand cross-link, the major DNA adduct of the anticancer drug cis-diamminedichloroplatinum(II). The duplex dodecamer d(AGAAGGCCTAGA).d(TCTAGGCCTTCT) was ligated into the HincII site of M13mp18 to produce an insertion mutant containing a unique StuI restriction enzyme cleavage site. A genome with a 12-base gap in the minus strand was created by hybridizing HincII-linearized M13mp18 duplex DNA with the single-stranded circular DNA of the 12-base insertion mutant. The dodecamer d(TCTAGGCCTTCT) was synthesized by the solid-phase phosphotriester method and platinated by reaction with cis-[Pt(NH3)2(H2O)2]2+ (yield 39%). Characterization by pH-dependent 1H NMR spectroscopy established that platinum binds to the N7 positions of the adjacent guanosines. The platinated oligonucleotide was phosphorylated in the presence of [gamma-32P]ATP with bacteriophage T4 polynucleotide kinase and incorporated into the 12-base gap of the heteroduplex, thus situating the adduct specifically within the StuI site in the minus strand of the genome. Approximately 80% of the gapped duplexes incorporated a dodecanucleotide in the ligation reaction. Of these, approximately half did so with the dodecanucleotide covalently joined to the genome at both 5' and 3' termini. The site of incorporation of the dodecamer was mapped to the expected 36-base region delimited by the recognition sites of XbaI and HindIII. The cis-[Pt(NH3)2(d(GpG]] cross-link completely inhibited StuI cleavage, which was fully restored following incubation of the platinated genome with cyanide to remove platinum as [Pt(CN)4]2-. Gradient denaturing gel electrophoresis of a 289-base-pair fragment encompassing the site of adduction revealed that the presence of the cis-[Pt(NH3)2(d(GpG]] cross-link induces localized weakening of the DNA double helix. In addition, double- and single-stranded genomes, in which the cis-[Pt(NH3)2(d(GpG]] cross-link resides specifically in the plus strand, were constructed. Comparative studies revealed no difference in survival between platinated and unmodified double-stranded genomes. In contrast, survival of the single-stranded platinated genome was only 10-12% that of the corresponding unmodified single-stranded genome, indicating that the solitary cis-[Pt(NH3)2(d(GpG]] cross-link is lethal to the single-stranded bacteriophage.  相似文献   

19.
The optical properties of the DNA complexes with the compounds of bivalent platinum were studied. The compounds differed by the nature of the anionic and neutral ligands and their spatial arrangement about the platinum atom. It was shown that the same as cis-[Pt (NH3)2Cl2] the platinum compounds with the biological activity, i.e. [Pt (en) Cl2], cis-[PtNH3 (Bz) Cl2] and cis-[Pt (NH3)2NO2Cl] induced at low values of r (a ratio of the number of the platinum moles added to the number of the DNA nucleotide moles in the solution) an increase in the amplitude of the positive band in the spectrum of the circular dichroism (CD) of the linear DNA and a marked decrease in the amplitude of the negative band in the spectrum of the CD of the liquid crystalline microphase of DNA formed in the presence of polyethyleneglycol. By the character of the action on the CD spectrum of the linear and condensed DNA [Pt (tetrameen)Cl2] which had no selective antimitotic effect might be referred to the above platinum compounds. Trans-[Pt (NH3)2NO2Cl], [PtNH3PyCl2], cis-[Pt (NH3)2(NO2)2] and [Pt (NH3)3Cl]Cl having no biological activity either induced only a decrease in the amplitude of the positive band in the CD spectrum of the linear DNA or had no effect on the CD spectrum. The effect of these compounds on the CD spectrum of the liquid crystalline microphase of DNA was slightly pronounced or not observed.  相似文献   

20.
The enzyme fumarase is inhibited by [cis-Pt(NH3)2(H2O)2] (NO3)2. The Pt compound most likely binds at a S-methionine site. Sodium diethyldithiocarbamate (Naddtc) appears to be a powerful regenerator of enzymatic activity. Thiourea is less active, while sodium thiosulfate (STS) is almost inactive in restoring the activity of the enzyme. The regeneration phenomena are based on the dissociation of the Pt-S bonds of the methionine type, and formation of species like [Pt(ddtc)2]. In the model adduct [Pt(dien)GS-Me]2+ Naddtc, thiourea and STS easily break the Pt-S bond of the methionine type. It is concluded that the model system for Naddtc and thiourea does resemble fumarase quite well. S-donor ligands, which may be used as rescue agents in Pt antitumor therapy, are known to suppress nephrotoxicity caused by [cis-PtCl2(NH3)2]. A parallel is drawn between the enzyme reactivation, modeled by fumarase, and the [cis-PtCl2(NH3)2] nephrotoxicity suppression by rescue agents. It is proposed that a Pt-methionine type binding is broken by the rescue agents Naddtc and thiourea, but that the rescue agent STS only inhibits the nephrotoxicity by inactivating unbound Pt species in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号