首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was hypothesized that the reduction of high-energy phosphates in muscle after repeated sprints is smaller in women than in men. Fifteen healthy and physically active women and men with an average age of 25 yr (range of 19-42 yr) performed three 30-s cycle sprints (Wingate test) with 20 min of rest between sprints. Repeated blood and muscle samples were obtained. Freeze-dried pooled muscle fibers of types I and II were analyzed for high-energy phosphates and their breakdown products and for glycogen. Accumulation of plasma ATP breakdown products, plasma catecholamines, and blood lactate, as well as glycogen reduction in type I fibers, was all lower in women than in men during sprint exercise. Repeated sprints induced smaller reduction of ATP and smaller accumulation of IMP and inosine in women than in men in type II muscle fibers, with no gender differences in changes of ATP and its breakdown products during the bouts of exercise themselves. This indicates that the smaller ATP reduction in women than in men during repeated sprints was created during recovery periods between the sprint exercises and that women possess a faster recovery of ATP via reamination of IMP during these recovery periods.  相似文献   

2.
Relating intramuscular fuel use to endurance in juvenile rainbow trout   总被引:5,自引:0,他引:5  
This study examined fuel depletion in white muscle of juvenile rainbow trout sprinted to fatigue to determine whether the onset of fatigue is associated with a measurable metabolic change within the muscle and whether muscle glycogen levels influence endurance. In this study, "fuels" refer to any energy-supplying compounds and include glycogen, phosphocreatine (PCr), and ATP. Fuel depletion in white muscle was estimated by the calculation of the anaerobic energy expenditure (AEE; in micromol ATP equivalents g(-1)) from the reduction of PCr and ATP and the accumulation of lactate. Progression of fuel use during sprinting was examined by sampling fish before they showed signs of fatigue and following fatigue. Most of the AEE before fatigue was due to PCr depletion. However, at the first signs of fatigue, there was a 32% drop in ATP. Similarly, when fish were slowly accelerated to a fatiguing velocity, the only significant change at fatigue was a 30% drop in ATP levels. Muscle glycogen levels were manipulated by altering ration (1% vs. 4% body weight ration per day) combined with either daily or no exercise. Higher ration alone led to significantly greater muscle glycogen but had no effect on sprint performance, whereas sprint training led to higher glycogen and an average threefold improvement in sprint performance. In contrast, periodic chasing produced a similar increase in glycogen but had no effect on sprint performance. Taken together, these observations suggest that (i) a reduction in ATP in white muscle could act as a proximate signal for fatigue during prolonged exercise in fish and (ii) availability of muscle glycogen does not limit endurance.  相似文献   

3.
This study was conducted to determine whether the pedaling frequency of cycling at a constant metabolic cost contributes to the pattern of fiber-type glycogen depletion. On 2 separate days, eight men cycled for 30 min at approximately 85% of individual aerobic capacity at pedaling frequencies of either 50 or 100 rev.min-1. Muscle biopsy samples (vastus lateralis) were taken immediately prior to and after exercise. Individual fibers were classified as type I (slow twitch), or type II (fast twitch), using a myosin adenosine triphosphatase stain, and their glycogen content immediately prior to and after exercise quantified via microphotometry of periodic acid-Schiff stain. The 30-min exercise bout resulted in a 46% decrease in the mean optical density (D) of type I fibers during the 50 rev.min-1 condition [0.52 (0.07) to 0.28 (0.04) D units; mean (SEM)] which was not different (P > 0.05) from the 35% decrease during the 100 rev.min-1 condition [0.48 (0.04) to 0.31 (0.05) D units]. In contrast, the mean D in type II fibers decreased 49% during the 50 rev.min-1 condition [0.53 (0.06) to 0.27 (0.04) units]. This decrease was greater (P < 0.05) than the 33% decrease observed in the 100 rev.min-1 condition [0.48 (0.04) to 0.32 (0.06) units). In conclusion, cycling at the same metabolic cost at 50 rather than 100 rev.min-1 results in greater type II fiber glycogen depletion. This is attributed to the increased muscle force required to meet the higher resistance per cycle at the lower pedal frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Human muscle metabolism during sprint running   总被引:8,自引:0,他引:8  
Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.  相似文献   

5.
Biopsy samples were taken from the vastus lateralis of 18- to 84-yr-old male sprinters (n = 91). Fiber-type distribution, cross-sectional area, and myosin heavy chain (MHC) isoform content were identified using ATPase histochemistry and SDS-PAGE. Specific tension and maximum shortening velocity (V(o)) were determined in 144 single skinned fibers from younger (18-33 yr, n = 8) and older (53-77 yr, n = 9) runners. Force-time characteristics of the knee extensors were determined by using isometric contraction. The cross-sectional area of type I fibers was unchanged with age, whereas that of type II fibers was reduced (P < 0.001). With age there was an increased MHC I (P < 0.01) and reduced MHC IIx isoform content (P < 0.05) but no differences in MHC IIa. Specific tension of type I and IIa MHC fibers did not differ between younger and older subjects. V(o) of fibers expressing type I MHC was lower (P < 0.05) in older than in younger subjects, but there was no difference in V(o) of type IIa MHC fibers. An aging-related decline of maximal isometric force (P < 0.001) and normalized rate of force development (P < 0.05) of knee extensors was observed. Normalized rate of force development was positively associated with MHC II (P < 0.05). The sprint-trained athletes experienced the typical aging-related reduction in the size of fast fibers, a shift toward a slower MHC isoform profile, and a lower V(o) of type I MHC fibers, which played a role in the decline in explosive force production. However, the muscle characteristics were preserved at a high level in the oldest runners, underlining the favorable impact of sprint exercise on aging muscle.  相似文献   

6.
In humans, the majority of studies demonstrate an age-associated reduction in the number of capillaries surrounding skeletal muscle fibers; however, recent reports in rats suggest that muscle capillarization is well maintained with advanced age. In sedentary and trained men, aging lowers the number of capillaries surrounding type II, but not type I, skeletal muscle fibers. The fiber type-specific effect of aging on muscle capillarization is unknown in women. Vascular endothelial growth factor (VEGF) is important in the basal maintenance of skeletal muscle capillarization, and lower VEGF expression is associated with increased age in nonskeletal muscle tissue of women. Compared with young women (YW), we hypothesized that aged women (AW) would demonstrate 1) lower muscle capillarization in a fiber type-specific manner and 2) lower VEGF and VEGF receptor expression at rest and in response to acute exercise. Nine sedentary AW (70 + 8 yr) and 11 YW (22 + 3 yr) had vastus lateralis muscle biopsies obtained before and at 4 h after a submaximal exercise bout for the measurement of morphometry and VEGF and VEGF receptor expression. In AW compared with YW, muscle capillary contacts were lower overall (YW: 2.36 + 0.32 capillaries; AW: 2.08 + 0.17 capillaries), specifically in type II (YW: 2.37 + 0.39 capillaries; AW: 1.91 + 0.36 capillaries) but not type I fibers (YW: 2.36 + 0.34 capillaries; AW: 2.26 + 0.24 capillaries). Muscle VEGF protein was 35% lower at rest, and the exercise-induced increase in VEGF mRNA was 50% lower in AW compared with YW. There was no effect of age on VEGF receptor expression. These results provide evidence that, in the vastus lateralis of women, 1) capillarization surrounding type II muscle fibers is lower in AW compared with YW and 2) resting VEGF protein and the VEGF mRNA response to exercise are lower in AW compared with YW.  相似文献   

7.
Eccentric exercise-induced muscle damage impairs muscle glycogen repletion   总被引:5,自引:0,他引:5  
Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.  相似文献   

8.
Results from the Russian Cosmos program suggest that the rhesusmonkey is an excellent model for studying weightlessness-induced changes in muscle function. Consequently, the purpose of this investigation was to establish the resting levels of selected substrateand enzymes in individual slow- and fast-twitch muscle fibers of therhesus monkey. A second objective was to determine the effect of an18-day sit in the Spacelab experiment-support primate facility[Experimental System for the Orbiting Primate (ESOP)].Muscle biopsies of the soleus and medial gastrocnemius muscles wereobtained 1 mo before and immediately after an 18-day ESOP sit. Thebiopsies were freeze-dried, and individual fibers were isolated andassayed for the substrates glycogen and lactate and for the high-energyphosphates ATP and phosphocreatine. Fiber enzyme activity was alsodetermined for the glycolytic enzymes phosphofructokinase and lactatedehydrogenase (LDH) and for the oxidative markers 3-hydroxyacyl-CoAdehydrogenase (-OAC) and citrate synthase. Consistent with otherspecies, the fast type II fibers contained higher glycogen content thandid the slow type I fibers. The ESOP sit had no significant effects onthe metabolic profile of the slow fibers of either muscle or the fast fibers of the soleus. However, the fast gastrocnemius fibers showed asignificant decline in phosphocreatine and an increase in lactate. Also, similar to other species, the fast fibers contained significantly higher LDH activities and lower 3-hydroxyacyl-CoA dehydrogenase activities. For the muscle enzymes, the quantitatively most important effect of the ESOP sit occurred with LDH where activities increased inall fiber types postsit except the slow type I fiber of the medial gastrocnemius.

  相似文献   

9.
In this study, we compared the effects of endurance training in the fasted state (F) vs. the fed state [ample carbohydrate intake (CHO)] on exercise-induced intramyocellular lipid (IMCL) and glycogen utilization during a 6-wk period of a hypercaloric (~+30% kcal/day) fat-rich diet (HFD; 50% of kcal). Healthy male volunteers (18-25 yrs) received a HFD in conjunction with endurance training (four times, 60-90 min/wk) either in F (n = 10) or with CHO before and during exercise sessions (n = 10). The control group (n = 7) received a HFD without training and increased body weight by ~3 kg (P < 0.001). Before and after a HFD, the subjects performed a 2-h constant-load bicycle exercise test in F at ~70% maximal oxygen uptake rate. A HFD, both in the absence (F) or presence (CHO) of training, elevated basal IMCL content by ~50% in type I and by ~75% in type IIa fibers (P < 0.05). Independent of training in F or CHO, a HFD, as such, stimulated exercise-induced net IMCL breakdown by approximately twofold in type I and by approximately fourfold in type IIa fibers. Furthermore, exercise-induced net muscle glycogen breakdown was not significantly affected by a HFD. It is concluded that a HFD stimulates net IMCL degradation by increasing basal IMCL content during exercise in type I and especially IIa fibers. Furthermore, a hypercaloric HFD provides adequate amounts of carbohydrates to maintain high muscle glycogen content during training and does not impair exercise-induced muscle glycogen breakdown.  相似文献   

10.
To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.  相似文献   

11.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

12.
Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may entail important implications for muscle function and fatigue resistance.  相似文献   

13.
To investigate relationships between pituitary function and gender on skeletal muscle growth and hypertrophy, fiber cross sectional area (CSA) and type were assessed in the plantaris muscle of normal and dwarf (Dw) male and female Lewis rats after 6 weeks of functional overload (FO). Serum growth hormone levels were 70-80% less in Dw rats of both genders, and body mass was 62% greater in normal rats when compared to their Dw counterparts. Muscle weight was affected by gender, dwarfism, and FO as well as a significant gender*Dw*FO interaction. FO increased Type I, IIA, and IIX/B fiber CSA 120%, 102%, and 75%, respectively. Only type 1H fibers exhibited a reduction in CSA as a function of gender or dwarfism. Both type IIA and IIX/B fibers were affected by a significant gender*Dw*FO interaction. Our results suggest that the growth of type II fibers is sensitive to gender and pituitary function, while hypertrophy of type II muscle fibers is a function of the interaction between mechanical load, gender, and pituitary function.  相似文献   

14.
Since accumulation of ammonia in plasma has been shown to be lower in females than in males following sprint exercise, we hypothesised that muscle inosine monophosphate (IMP) accumulation would also be smaller in females, especially in type II fibres. A relationship between plasma ammonia and muscle IMP accumulation was expected, since ammonia and IMP are formed in equimolar amounts during the net breakdown of adenine nucleotides. The sprint-exercise-induced IMP accumulation, measured in biopsies from vastus lateralis muscle, did not differ between males (n = 16) and females (n = 16) either in type I fibres [males 4.6 (SD 3), females 5.7 (SD 2) mmol x kg(-1) dry muscle], type II fibres [males 13.2 (SD 4), females 12.6 (SD 4) mmol x kg(-1) dry muscle] or in mixed muscle [males 8.4 (SD 3), females 8.2 (SD 3) mmol x kg(-1) dry muscle]. The accumulation of plasma ammonia following the sprint was 35% lower in the females than in the males. The inter-individual variation in plasma ammonia accumulation was explained by the sex but not by the muscle IMP accumulation as tested in a multiple regression analysis. In conclusion, the smaller plasma ammonia accumulation following sprint exercise in females than in males would seem not to be explained by a smaller muscle IMP accumulation per unit muscle during sprint exercise.  相似文献   

15.
A short-term training program involving 2 h of daily exercise at 59% of peak O2 uptake (VO2max) repeated for 10-12 consecutive days was employed to determine the significance of adaptations in energy metabolic potential on alterations in energy metabolism and substrate utilization in working muscle. The initial VO2max determined before training on the eight male subjects was 53.0 +/- 2.0 (SE) ml.kg-1.min-1. Analysis of samples obtained by needle biopsy from the vastus lateralis muscle before exercise (0 min) and at 15, 60, and 99 min of exercise indicated that on the average training resulted (P less than 0.05) in a 6.5% higher concentration of creatine phosphate, a 9.9% lower concentration of creatine, and a 39% lower concentration of lactate. Training had no effect on ATP concentration. These adaptations were also accompanied by a reduction in the utilization in glycogen such that by the end of exercise glycogen concentration was 47.1% higher in the trained muscle. Analysis of the maximal activities of representative enzymes of different metabolic pathways and segments indicated no change in potential in the citric acid cycle (succinate dehydrogenase, citrate synthase), beta-oxidation (3-hydroxyacyl CoA dehydrogenase), glucose phosphorylation (hexokinase), or potential for glycogenolysis (phosphorylase) and glycolysis (pyruvate kinase, phosphofructokinase, alpha-glycerophosphate dehydrogenase, lactate dehydrogenase). With the exception of increases in the capillary-to-fiber area ratio in type IIa fibers, no change was found in any fiber type (types I, IIa, and IIb) for area, number of capillaries, capillary-to-fiber area ratio, or oxidative potential with training.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of beta-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in VO2peak, for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-beta-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in VO2peak/fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.  相似文献   

17.
Influence of exercise on the fiber composition of skeletal muscle   总被引:1,自引:0,他引:1  
Biopsy samples from the vastus lateralis muscle (VLM) of man were examined for fiber composition at rest and at selected intervals during prolonged exercise ranging in intensity from 40% to 75% of the total body maximal oxygen uptake (VO2max) and one-min bouts of exercise at 150% VO2max. Because of the heterogeneity of fibers in human VLM, studies were also completed where the effect of exercise on the fiber composition of the rat soleus muscle (SM) was examined. In some animals the SM from one hindlimb was removed 9 days prior to their being exercised after which the remaining SM was removed. Exercise reduced muscle glycogen in all experiments. In the studies with man, blood lactate exceeded 17 mmoles/l after the heavy exercise but was largely unchanged by endurance exercise. Colonic temperature of the exercised rats exceeded 40 degrees C. In studies where fibers were identified only as type I and type II, type II fibers in the VLM of all samples (16) taken at rest averaged 61.2 +/- 12.5% as compared to 59.0 +/- 12.0% after exercise (54 biopsy samples). In a second series of studies with man where the subtypes of type II fibers were identified, there were also no differences in fiber composition of the VLM after varying periods of exercise. Glycogen content and percent fiber composition were the same in right and left SM obtained from rested rats. Exercise (30 to 40 min) did not alter the fiber composition of the rat SM. These data demonstrate that the histochemically demonstratable myofibrillar actomyosin ATPase of skeletal muscle is not altered by a single exercise bout.  相似文献   

18.
Tibialis anterior muscle biopsies from moderately active men and women (21-30 yr; n = 30) were examined to determine potential gender differences in capillarization. The fiber type proportions [type I (T1) approximately 73%] were unaffected by gender. The men (M) had significantly (P < 0.001) larger fibers than the women (W), with a greater gender effect for type II (T2) fibers (P < 0.001). The M and W had similar capillary densities (CD approximately 390 capillaries/mm2), but the capillaries-to-fiber ratio (C/F) was higher in the M (M = 2.20 +/- 0.35, W = 1.66 +/- 0.32; P < 0.01). Capillary contacts (CC) were higher in T2 than T1 for the M (P < 0.01), but not W, and M had greater CC (P < 0.001). Both fiber area per capillary (FA/C) and fiber perimeter per capillary (FP/C) indicated that T1 fibers had greater capillarization than T2 fibers (P < 0.001). There were no gender differences in T1 FA/C and T2 FA/C or T1 FP/C, but a gender difference existed for T2 FP/C (M = 60.5 +/- 10.9, W = 70.6 +/- 13.4; P < 0.01). The gender difference for C/F could be explained by fiber size; however, the physiological implications of the difference in T2 FP/C remains to be determined. In conclusion, despite gender differences for fiber size, overall, capillarization was similar between the men and women.  相似文献   

19.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

20.
Fiber type composition of the vastus lateralis muscle of young men and women.   总被引:11,自引:0,他引:11  
This study presents data collected over the past 10 years on the muscle fiber type composition of the vastus lateralis muscle of young men and women. Biopsies were taken from the vastus lateralis muscle of 55 women (21.2+/-2.2 yr) and 95 men (21.5+/-2.4 yr) who had volunteered to participate in various research projects. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were classified using mATPase histochemistry, and cross-sectional area was measured for the major fiber types (I, IIA, and IIB). Myosin heavy chain (MHC) content was determined electrophoretically on all of the samples from the men and on 26 samples from the women. With the exception of fiber Type IC, no significant differences were found between men and women for muscle fiber type distribution. The vastus lateralis muscle of both the men and women contained approximately 41% I, 1% IC, 1% IIC, 31% IIA, 6% IIAB, and 20% IIB. However, the cross-sectional area of all three major fiber types was larger for the men compared to the women. In addition, the Type IIA fibers were the largest for the men, whereas the Type I fibers tended to be the largest for the women. Therefore, gender differences were found with regard to the area occupied by each specific fiber type: IIA>I>IIB for the men and I>IIA>IIB for the women. These data establish normative values for the mATPase-based fiber type distribution and sizes in untrained young men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号