首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seawater and plankton samples were collected over a period of 17 months from November 1998 to March 2000 along the coast of Peru. Total DNA was extracted from water and from plankton grouped by size into two fractions (64 μm to 202 μm and >202 μm). All samples were assayed for Vibrio cholerae, V. cholerae O1, V. cholerae O139, and ctxA by PCR. Of 50 samples collected and tested, 33 (66.0%) were positive for V. cholerae in at least one of the three fractions. Of these, 62.5% (n = 32) contained V. cholerae O1; ctxA was detected in 25% (n = 20) of the V. cholerae O1-positive samples. None were positive for V. cholerae O139. Thus, PCR was successfully employed in detecting toxigenic V. cholerae directly in seawater and plankton samples and provides evidence for an environmental reservoir for this pathogen in Peruvian coastal waters.  相似文献   

2.
The El Niño event of 1997/1998 provided an opportunity to carry out a field experiment in which the relationship of sea surface temperature and the association of Vibrio cholerae with marine plankton could be assessed in Mexican coastal and estuarine areas. Plankton samples were collected from May 1997 through June 1999. Sites included the Mexican ports of Veracruz, Coatzacoalcos and Frontera in the Gulf of Mexico and Ensenada, Guaymas, Mazatlán, Manzanillo, Acapulco and Oaxaca in the Pacific Ocean. Sampling was also accomplished during two oceanographic cruises in the Yucatan channel of the Caribbean Sea. Bacteriological analyses for V. cholerae serogroups O1 and O139 were carried out. Also, the taxonomic structure of the plankton populations was determined. Vibrio cholerae O1 was detected only in Veracruz samples collected during April, May and June 1999, when La Niña climatic conditions prevailed. It is concluded that V. cholerae O1 in Mexico derives from its marine and estuarine origin and not from sewage contamination. The significant number of Acartia tonsa copepodites and V. cholerae copepodite-positive samples suggests a significant role of this copepod in the occurrence and distribution of V. cholerae in coastal areas of Mexico.  相似文献   

3.
Multiplex real-time PCR detection of Vibrio cholerae   总被引:10,自引:0,他引:10  
Cholera is an important enteric disease, which is endemic to different regions of the world and has historically been the cause of severe pandemics. Vibrio cholerae is a natural inhabitant of the aquatic environment and the toxigenic strains are causative agents of potentially life-threatening diarrhoea. A multiplex, real-time detection assay was developed targeting four genes characteristic of potentially toxigenic strains of V. cholerae, encoding: repeat in toxin (rtxA), extracellular secretory protein (epsM), mannose-sensitive pili (mshA) and the toxin coregulated pilus (tcpA). The assay was developed on the Cepheid Smart Cycler using SYBR Green I for detection and the products were differentiated based on melting temperature (Tm) analysis. Validation of the assay was achieved by testing against a range of Vibrio and non-Vibrio species. The detection limit of the assay was determined to be 10(3) CFU using cells from pure culture. This assay was also successful at detecting V. cholerae directly from spiked environmental water samples in the order of 10(4) CFU, except from sea water which inhibited the assay. The incorporation of a simple DNA purification step prior to the addition to the PCR increased the sensitivity 10 fold to 10(3) CFU. This multiplex real-time PCR assay allows for a more reliable, rapid detection and identification of V. cholerae which is considerably faster than current conventional detection assays.  相似文献   

4.
Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.  相似文献   

5.
A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism.  相似文献   

6.
Summary Environmental monitoring is important to enable effective resource management and public health protection as well as rapid and accurate identification of Vibrio cholerae in drinking-water sources. Traditional methods employed in identification are laborious, time-consuming and practically not viable for screening of a large number of samples. In this study, a direct cell duplex PCR assay for the detection of viable toxigenic V. cholerae in environmental water samples was developed. In the PCR assay, two gene sequences were amplified together, one of outer membrane protein (ompW), which is species-specific and another of cholera toxin (ctxAB). The detection limit of duplex PCR was 5 × 104 V. cholerae/reaction. Different environmental water samples were artificially spiked with V. cholerae O1 cells and filtered through a 0.22 μm membrane, and the filters enriched in alkaline peptone water for 6 h and then used directly in the duplex PCR assay. The PCR procedure coupled with enrichment could detect as few as 1.2 c.f.u./ml in ground water, 1.2 × 102 c.f.u. ml−1 in sewer water and 1.2 × 103c.f.u. ml−1 in tap water. The assay was successfully applied directly for screening of environmental potable water samples collected from a cholera-affected area. The proposed method is simple and can be used for environmental monitoring of toxigenic as well as non-toxigenic V. cholerae.  相似文献   

7.
Aims: To develop an effective multiplex PCR for simultaneous and rapid detection of Vibrio cholerae, Vibrio vulnificus and Vibrio parahaemolyticus, the three most important Vibrio species that can cause devastating health hazards among human. Methods and Results: Species‐specific PCR primers were designed based on toxR gene for V. cholerae and V. parahaemolyticus, and vvhA gene for V. vulnificus. The multiplex PCR was validated with 488 Vibrio strains including 322 V. cholerae, 12 V. vulnificus, and 82 V. parahaemolyticus, 20 other Vibrio species and 17 other bacterial species associated with human diseases. It could detect the three target bacteria without any ambiguity even among closely related species. It showed good efficiency in detection of co‐existing target species in the same sample. The detection limit of all the target species was ten cells per PCR tube. Conclusions: Specificity and sensitivity of the multiplex PCR is 100% each and sufficient for simultaneous detection of these potentially pathogenic Vibrio species in clinical and environmental samples. Significance and Impact of the Study: This simple, rapid and cost‐effective method can be applicable in a prediction system to prevent disease outbreak by these Vibrio species and can be considered as an effective tool for both epidemiologist and ecologist.  相似文献   

8.
A Vibrio cholerae bacteriophage, family Myoviridae, was isolated from seawater collected from the coastal water of Lima, Peru. Genome size was estimated to be 29 kbp. The temperate phage was specific to V. cholerae and infected 12/13 V. cholerae O1 strains and half of the four non-O1/non-O139 strains tested in this study. Vibrio cholerae O139 strains were resistant to infection and highest infection rates were obtained in low nutrient media amended with NaCl or prepared using seawater as diluent.  相似文献   

9.
Cholera disease, caused by the bacterium Vibrio cholerae, afflicts hundreds of thousands worldwide each year. Endemic to aquatic environments, V. cholerae's proliferation and dynamics in marine systems are not well understood. Here, we show that under a variety of coastal seawater conditions V. cholerae remained primarily in a free-living state as opposed to attaching to particles. Growth rates of free-living V. cholerae (micro: 0.6-2.9 day(-1)) were high (similar to reported values for the bacterial assemblages; 0.3-2.5 day(-1)) particularly in phytoplankton bloom waters. However, these populations were subject to heavy grazing-mortality by protozoan predators. Thus, grazing-mortality counterbalanced growth, keeping V. cholerae populations in check. Net population gains were observed under particularly intense bloom conditions when V. cholerae proliferated, overcoming grazing pressure terms in part via rapid growth (> 4 doublings day(-1)). Our results show V. cholerae is subject to protozoan control and capable of utilizing multiple proliferation pathways in the marine environment. These findings suggest food web effects play a significant role controlling this pathogen's proliferation in coastal waters and should be considered in predictive models of disease risk.  相似文献   

10.
During a period of 18 months of an epidemic of Vibrio cholerae, cultures from 450 samples of fish, shellfish and seawater were isolated. The highest frequencies of occurrence observed were 5.2% in fish from inshore waters, 3.9% in marine snails, and 1.8% in mussels and crabs. No incidents were isolated from cultures of fish in the open seas or cultures from frozen shrimp. Cultures of marine origin were compared with cultures from hospitalized patients, and these revealed marked serological and toxigenic differences. Marine strains were mainly non-O1 V. cholerae, non toxigenic. We presume fishing off-shore not to be the cause of this outbreak. However, marine species from contaminated waters could contain toxigenic V. cholerae remaining viable and potentially pathogenic. Methods used were more sensitive and specific for detecting marine strains. In this paper the need to use more specific methods is discussed.  相似文献   

11.
In this paper we describe optimization of SYBR Green I-based real-time PCR parameters and testing of a large number of microbial species with vvh-specific oligonucleotide primers to establish a rapid, specific, and sensitive method for detection of Vibrio vulnificus in oyster tissue homogenate and Gulf of Mexico water (gulf water). Selected oligonucleotide primers for the vvh gene were tested for PCR amplification of a 205-bp DNA fragment with a melting temperature of approximately 87 degrees C for 84 clinical and environmental strains of V. vulnificus. No amplification was observed with other vibrios or nonvibrio strains with these primers. The minimum level of detection by the real-time PCR method was 1 pg of purified genomic DNA or 10(2) V. vulnificus cells in 1 g of unenriched oyster tissue homogenate or 10 ml of gulf water. It was possible to improve the level of detection to one V. vulnificus cell in samples that were enriched for 5 h. The standard curves prepared from the real-time PCR cycle threshold values revealed that there was a strong correlation between the number of cells in unenriched samples and the number of cells in enriched samples. Detection of a single cell of V. vulnificus in 1 g of enriched oyster tissue homogenate is in compliance with the recent Interstate Shellfish Sanitation Conference guidelines. The entire detection method, including sample processing, enrichment, and real-time PCR amplification, was completed within 8 h, making it a rapid single-day assay. Rapid and sensitive detection of V. vulnificus would ensure a steady supply of postharvest treated oysters to consumers, which should help decrease the number of illnesses or outbreaks caused by this pathogen.  相似文献   

12.
A pit-stop semi-nested PCR assay for the detection of toxigenic Vibrio cholerae in environmental water samples was developed and its performance evaluated. The PCR technique amplifies sequences within the cholera toxin operon specific for toxigenic V. cholerae. The PCR procedure coupled with an enrichment culture detected as few as four V. cholerae organisms in pure culture. Treated sewage, surface, ground and drinking water samples were seeded with V. cholerae and following enrichment, a detection limit of as few as 1 V. cholerae cfu ml(-1) was obtained with amplification reactions from crude bacterial lysates. The proposed method, which includes a combination of enrichment, rapid sample preparation and a pit-stop semi-nested PCR, could be applicable in the rapid detection of toxigenic V. cholerae in environmental water samples.  相似文献   

13.
The occurrence and distribution of Vibrio cholerae in sea water and plankton along the coast of Peru were studied from October 1997 to June 2000, and included the 1997-98 El Ni?o event. Samples were collected at four sites in coastal waters off Peru at monthly intervals. Of 178 samples collected and tested, V. cholerae O1 was cultured from 10 (5.6%) samples, and V. cholerae O1 was detected by direct fluorescent antibody assay in 26 out of 159 samples tested (16.4%). Based on the number of cholera cases reported in Peru from 1997 to 2000, a significant correlation was observed between cholera incidence and elevated sea surface temperature (SST) along the coast of Peru (P < 0.001). From the results of this study, coastal sea water and zooplankton are concluded to be a reservoir for V. cholerae in Peru. The climate-cholera relationship observed for the 1997-98 El Ni?o year suggests that an early warning system for cholera risk can be established for Peru and neighbouring Latin American countries.  相似文献   

14.
AIM: To establish a simple multiplex polymerase chain reaction (PCR) that will identify Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. METHODS AND RESULTS: A total of 429 Vibrio spp. from various origins were tested with the novel primers targeting toxR. The reverse primers were all designed to be species specific, while the forward primer was universal. The primers correctly identified all the V. parahaemolyticus, V. cholerae and V. vulnificus isolates tested. CONCLUSIONS: The toxR multiplex PCR works well when the initial colony morphology is known. If not, Vibrio alginolyticus might represent a diagnostic obstacle. SIGNIFICANCE AND IMPACT OF THE STUDY: The method provides a fast and reliable way of identifying the main Vibrio spp. involved in food-borne disease. The method could prove very useful for laboratories working with identification of these Vibrio spp.  相似文献   

15.
霍乱弧菌检测方法的研究进展   总被引:2,自引:0,他引:2  
烈性肠道传染病霍乱能引起大范围乃至世界性大流行,在我国被列为甲类传染病.霍乱弧菌是导致感染者严重腹泻、引起霍乱的病原菌.霍乱弧菌的快速、准确检测是霍乱预防、控制的重要依据.目前,国内、外针对霍乱弧菌建立了许多有效的检测方法,尤其是分子生物学相关技术的应用,为霍乱弧菌的检测提供了新的手段.本文综述了近年来霍乱弧菌检测方法...  相似文献   

16.
Vibrio cholerae, the causative agent of cholera is ubiquitously distributed in aquatic environment particularly in coastal waters, estuaries, and rivers. In the present investigation, a multiplex PCR assay was developed for the detection of virulence-associated genes (rtxA, tcpA, ctxA, hlyA, and sto) in environmental isolates of V. cholerae. A total of 90 strains isolated from different environmental sources were screened for the presence of virulence-associated genes. Our results showed that this method represents a simple, cost effective, and robust tool for rapid detection of virulence-associated genes. This multiplex PCR can be used for examining prevalence of virulence-associated genes and hence will be useful for better understanding of epidemiology of environmental V. cholerae.  相似文献   

17.
Toxigenic Vibrio cholerae, the cause of cholera, is a native flora of the aquatic environment which is transmitted through drinking water and still remains the leading cause of morbidity and mortality in many developing countries including Thailand. The culture method (CM), which is routinely used for assessing water quality, has not proven as efficient as molecular methods because the notorious pathogen survives in water mostly in a non-culturable state. We employed duplex-polymerase chain reaction (duplex-PCR) for detection of tcpA and ctxA genes in toxigenic V. cholerae, and compared PCR detection with CM in various waters of Khon Kaen Municipality, Thailand. We also evaluated the effect of different pre-PCR conditions on the results of ctxA and tcpA detection including: 1) water filtered and enriched in alkaline peptone water (APW) for 3 h before PCR, 2) water filtered without enrichment before PCR, and 3) use of only enrichment in APW for 6 h before PCR. Of the 96 water samples (taken from waste-water, potable and waste-water from patients' houses, and from rivers) tested, 48 (50%) were positive for ctxA and tcpA by duplex-PCR, whereas only 29 (30%) were positive for V. cholerae by CM. Of the 29 V. cholerae isolated by CM, 2 (7%) were toxigenic V. cholerae belonging to serovar O1, while the rests were non-O1/ non-O139. Results revealed, therefore, that ctxA and tcpA-targeted duplex PCR is more sensitive than CM for detection of toxigenic V. cholerae from water samples because CM detected much less toxigenic V. cholerae than the non-toxigenic V. cholerae. Template DNA as low as 100 fg or 23 cells of V. cholerae in the water sample was detected in duplex PCR. Pre-PCR filtration followed by enrichment for 3 h significantly increase in the efficiency of duplex-PCR detection of toxigenic V. cholerae.  相似文献   

18.
A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism.  相似文献   

19.
We report here a rapid protocol for the detection of Vibrio and Salmonella in drinking water using a duplex PCR reaction. The developed protocol can detect as few as 500 cells in a single reaction, which has been achieved by optimizing the temperature steps and magnesium chloride concentration for the reactions. The described PCR protocol could detect Vibrio and Salmonella spiked in drinking water.  相似文献   

20.
用基于TaqMan探针的Real-time PCR技术定量检测副溶血弧菌   总被引:10,自引:0,他引:10  
副溶血弧菌是一种引起食源性疾病的重要病原菌,传统的鉴定方法费时费力且容易出现假阴性,建立一种定量检测副溶血弧菌基因的方法尤为重要。根据GenBank公布的副溶血弧菌的gyrB基因序列设计一对引物和TaqMan探针,建立了基于TaqMan探针的RealtimePCR方法。通过对9种细菌(12株菌株)的DNA进行扩增,结果所有4株副溶血弧菌均可产生扩增曲线,其他8株非副溶血弧菌均不产生扩增曲线,证明了引物和探针具有很高的特异性。细菌纯培养物品和人工布菌的检测敏感度分别为1CFUPCR反应体系和10CFUPCR反应体系,相关系数均为0.99(r2=0.99),整个试验可在1h内完成。建立的方法可用于海产品中副溶血弧菌的快速定量检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号