首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract— The effects of altered osmolality on respiration and fine structure were studied in isolated cerebral mitochondria from mature rats (60-100 days of age) and from rat pups in the first month of postnatal life (5, 10, 20 and 30 days). In the mature cerebral mitochondria, ADP-dependent respiration was inhibited in media of decreased osmolality. There was a transient inhibition of ADP-dependent respiration and a sustained increase in ADP-independent respiration in media of increased osmolality. In contrast, cerebral mitochondria from 5-day-old rats showed both inhibition of ADP-dependent respiration and increased ADP-independent respiration in hypo-osmolal media. In these mitochondria, inhibition of ADP-dependent respiration was stable and ADP-independent respiration was unchanged in media of increased osmolality. The transition to the mature respiratory response occurring with altered osmolality took place between 10 and 30 days of age. During this same age period, cerebral mitochondria showed an increasing resistance to matrix condensation in media of normal and increased osmolality.  相似文献   

2.
The effects of lead acetate on respiration in cerebral and cerebellar mitochondria from immature and adult rats were studied polarographically. With all substrates low lead concentrations produced an increase in respiration. Higher concentrations produced an inhibition of both this lead-induced respiration and ADP-dependent (State 3) respiration. Lead-induced respiration required inorganic phosphate and was inhibited by oligomycin, suggesting a coupling to oxidative phosphorylation. Inhibition of respiration was produced by much lower lead concentrations with NAD-linked citric acid cycle substrates than with succinate or -glycerophosphate. In partially disrupted mitochondria, NAD-linked substrate oxidation was inhibited at lead concentrations which did not affect NADH oxidation. Thus, in brain mitochondria the NAD-linked dehydrogenases, located in the matrix space, were more sensitive to inhibition by lead than were inner membrane enzymes. All in vitro lead effects on mitochondrial respiration were comparable in cerebral and cerebellar mitochondria isolated from both immature and adult rats.  相似文献   

3.
RESPIRATION IN VITRO OF SYNAPTOSOMES FROM MAMMALIAN CEREBRAL CORTEX   总被引:26,自引:13,他引:13  
Abstract— —(1) The respiratory properties of synaptosomes and mitochondria from mammalian cerebral cortex are compared.
(2) Synaptosome showed high and linear respiration with glucose and pyruvate as substrates in Krebs-Ringer media. Mitochondria showed such respiration only with pyruvate as substrate in media lacking Na and high in K and phosphate.
(3) Exposure of synaptosomes to hypotonic media caused loss of lactate dehydrogenase (LDH) and protein, and respiration diminished and became non-linear.
(4) Both ATP and phosphocreatine were synthesised by synaptosomes with glucose as substrate. ATP was synthesised by mitochondria in the presence of pyruvate.
(5) Synaptosome but not mitochondria showed some capacity for active accumulation of potassium.
(6) Both mitochondria and synaptosomes respired with glutamate as substrate. Glutamate caused 80 per cent loss of ATP and phosphocreatine in synaptosomes but did not diminish the level of mitochondrial ATP.  相似文献   

4.
The effects of phthalate esters on the oxidation of succinate, glutamate, beta-hydroxybutyrate and NADH by rat liver mitochondria were examined and it was found that di-n-butyl phthalate (DBP) strongly inhibited the succinate oxidation by intact and sonicated rat mitochondria, but did not inhibit the State 4 respiration with NAD-linked substrates such as glutamate and beta-hydroxybutyrate. However, oxygen uptake accelerated by the presence of ADP and substrate (State 3) was inhibited and the rate of oxygen uptake decreased to that without ADP (State 4). It was concluded that phthalate esters were electron and energy transport inhibitors but not uncouplers. Phthalate esters also inhibited NADH oxidation by sonicated mitochondria. The degree of inhibition depended on the carbon number of alkyl groups of phthalate esters, and DBP was the most potent inhibitor of respiration. The activity of purified beef liver glutamate dehydrogenase [EC 1.4.1.3] was slightly inhibited by phthalate esters.  相似文献   

5.
The effects of 2-mercaptoacetate on the respiration rates induced by different substrates were studied in vitro in isolated liver mitochondria. With palmitoyl-L-carnitine or 2-oxoglutarate as the substrate, the ADP-stimulated respiration (State 3) was dose-dependently inhibited by 2-mercaptoacetate. with glutamate or succinate as the substrate. State-3 respiration was only slightly inhibited by 2-mercaptoacetate. In contrast, the oxidation rate of 3-hydroxybutyrate was competitively inhibited by 2-mercaptoacetate in both isolated mitochondria and submitochondrial particles. In uncoupled mitochondria and in mitochondria in which ATP- and GTP-dependent acyl-CoA biosynthesis was inhibited, the inhibitory effect of 2-mercaptoacetate on palmitoyl-L-carnitine oxidation was abolished; under the same conditions, however, inhibition of 3-hydroxybutyrate oxidation by 2-mercaptoacetate still persisted. These results led to the following conclusions: 2-mercaptoacetate itself enters the mitochondrial matrix, inhibits fatty acid oxidation through a mechanism requiring an energy-dependent activation of 2-mercaptoacetate and itself inhibits 3-hydroxybutyrate oxidation through a competitive inhibition of the membrane-bound 3-hydroxybutyrate dehydrogenase. This study also strongly suggests that the compound responsible for the inhibition of fatty acid oxidation is 2-mercaptoacetyl-CoA.  相似文献   

6.
Thyroxine-induced changes in rat liver mitochondrial ubiquinone   总被引:1,自引:0,他引:1  
Ubiquinone was extracted from liver mitochondria isolated from euthyroid and hyperthyroid rats. The redox state of ubiquinone was determined during States III and IV respiration with succinate or glutamate-malate substrates. Ubiquinone was more reduced during State III or IV in the hyperthyroid mitochondria with either substrate. Furthermore, the concentration of ubiquinone increased in the hyperthyroid rats.  相似文献   

7.
Mitochondria isolated from kidneys of lead-intoxicated rats have been shown to have decreased oxidative and phosphorylative abilities. The purpose of this study was to determine whether these abnormal mitochondria would undergo ultrastructural transformation during controlled respiration in the absence of phosphate acceptor (State IV), as previously demonstrated for normal liver mitochondria. It was first shown that normal rat kidney mitochondria transforms from a condensed ultrastructural conformation to an orthodox conformation after 5 min of State IV respiration with pyruvate-malate substrate. Reversal to a condensed conformation follows stimulation of respiration with adenosine diphosphate (ADP). A large portion of kidney mitochondria from lead-poisoned rats do not change from condensed to orthodox conformation during State IV respiration. Other mitochondria do transform to the orthodox form but they rapidly degenerate. State IV respiration decreases as these few orthodox mitochondria disintegrate. The conclusion is that those mitochondria that do not undergo change in ultrastructure have impairment of electron transport, and that those that do become orthodox have increased membrane lability and undergo degeneration.  相似文献   

8.
The initial state 3 rates of respiration of mitochondria from plant tissue and from rat liver are usually less than the state 3 rates obtained after the mitochondria experience several state 3-state 4 cycles.Reduction of the absolute rate of respiration by decreasing the temperature or increasing the osmolarity of the reaction medium increased both the magnitude of the inhibition and its persistence in subsequent cycles. Under particularly adverse reaction conditions the initial state 3 was depressed to the extent that no distinction was observed in the state 3 and state 4 rates and the mitochondria appeared to have lost respiratory control. Thus, for comparative studies, invalid conclusions regarding the effect of these factors on respiration could be drawn unless the inhibition were removed.The inhibition was observed with substrates other than succinate and was therefore not attributed to oxaloacetate inhibition of succinate dehydrogenase.Increasing the amount of ADP added at each cycle did not appreciably reduce the inhibition.The inhibition of initial state 3 rates was satisfactorily relieved by incubating the mitochondria with substrate, and several cycles of ADP under conditions which increased the absolute rate of respiration. Once relieved of the inhibition, mitochondria could be stored at 0° for several hours without the inhibition being apparent again.This work was supported by a CSIRO, Australia, study grant awarded to J. M. Lyons while on sabbatical leave from the Department of Vegetable Crops, University of California, Riverside, California 92502.  相似文献   

9.
The effect of exogenous cytochrome c on respiration rate of the rat and human heart mitochondria was assessed in situ, using permeabilized fibers. It was (i) much more pronounced in State 2 and 4 than in State 3 with all the respiratory substrates (pyruvate+malate, succinate, palmitoyl-CoA+carnitine and octanoyl-L-carnitine), (ii) different with different substrates, (iii) much higher after ischemia in both metabolic states, particularly in the case of succinate oxidation compared to pyruvate+malate, (iv) the highest in State 4 with succinate as a substrate. Similar results were obtained with the isolated rat and rabbit heart mitochondria. The differences in the degree of stimulation of mitochondrial respiration by cytochrome c and, thus, sensitivity of cytochrome c test in evaluation of the intactness/injury of outer mitochondrial membrane are probably determined by the differences in the cytochrome c role in the control of mitochondrial respiration in the above-described conditions.  相似文献   

10.
Summary The effects of the microtubular inhibitor, podophyllotoxin, on mitochondrial respiration were determined using isolated, digitonin-permeabilized hepatocytes and isolated mitochondria. In hepatocytes, podophyllotoxin (1.5 mM) inhibited coupled and uncoupled respiration of both FAD and NAD-linked substrates. In mitochondria, podophyllotoxin inhibited State III respiration, prevented the return to State IV respiration, and inhibited uncoupled respiration. There was no inhibition of ascorbate/TMPD oxidation in either the hepatocytes or the mitochondria. Podophyllotoxin had no effect upon oligomycin inhibition of coupled respiration. Oligomycin had no effect on the podophyllotoxin-inhibition of uncoupled respiration in either hepatocytes or mitochondria. The results indicate that podophyllotoxin alters electron flow at a site early in the electron transport chain.  相似文献   

11.
Though extracts of Ginkgo biloba leaves (GBE) have a wide pharmacological application, little is known about GBE effects on mitochondria. In this work, effects of ethanolic GBE on the respiration of isolated rat heart and liver mitochondria were investigated. We found that GBE stimulates the pyruvate + malate-dependent State 2 respiration of heart mitochondria and decreases mitochondrial membrane potential. Uncoupling effect of GBE was found to be due to its protonophoric action and is likely to be mediated by the ATP/ADP-translocator and uncoupling proteins. The effect of GBE was less in liver than in heart mitochondria. State 3 respiration of heart mitochondria was slightly stimulated at low and depressed at higher GBE concentrations. Inhibition of State 3 respiration of heart mitochondria was not relieved by uncoupler indicating that GBE may inhibit the respiratory chain complexes or the substrate transport. However, Complex IV of the respiratory chain was not inhibited by GBE. H2O2 generation was attenuated by low concentration of GBE probably due to mild uncoupling. The data suggest that mild but not severe uncoupling activity of GBE may be important in providing pharmacological protection of cellular functions in pathological situations.  相似文献   

12.
Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.  相似文献   

13.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


14.
The effect of intramitochondrial acyl-CoA on the respiration of rabbit heart mitochondria in different metabolic states was studied. Acyl-CoA inhibited O2 consumption by 11% in State 4 and by 6% in State 3. However, the effect of acyl-CoA was more pronounced (20%) in the intermediate state of respiration between State 4 and State 3. The data obtained suggest that acyl-CoA can regulate oxidative phosphorylation in heart mitochondria in vivo.  相似文献   

15.
Suspensions of isolated cells in various media were prepared from mouse liver which had been perfused via the portal vein with a buffered medium containing 0.40 M sucrose, and the cells were fixed with osmium tetroxide. Their fine structure was compared with that of cells from perfused and unperfused intact liver. Perfusion brought about some separation of the cells with little or no damage to cell membranes. When cells were dispersed in 0.40 M sucrose medium the plasma membranes partially broke down, and this disintegration was increased by transfer of the cells to media of lower osmolarity. This is presumed to account for the loss of permeability barriers which occurs in isolated liver cells. The mitochondria in cells of perfused liver and in isolated cells remained elongated, but the layers of many mitochondrial cristae became separated by clear spaces. When cells were transferred to a medium containing 0.20 M sucrose, the mitochondria swelled and became spherical, often with displacement of the swollen cristae to the periphery. In a medium containing 0.06 M sucrose and 0.08 M potassium chloride the outer chamber of many mitochondria became swollen with displacement of the mitochondrial body to one side to give a crescent-shaped appearance. These changes in mitochondrial morphology are discussed in relation to the metabolic activity of isolated liver cells.  相似文献   

16.
Abstract Daily torpor results in an ~70% decrease in metabolic rate (MR) and a 20%-70% decrease in state 3 (phosphorylating) respiration rate of isolated liver mitochondria in both dwarf Siberian hamsters and mice even when measured at 37°C. This study investigated whether mitochondrial metabolic suppression also occurs in these species during euthermic fasting, when MR decreases significantly but torpor is not observed. State 3 respiration rate measured at 37°C was 20%-30% lower in euthermic fasted animals when glutamate but not succinate was used as a substrate. This suggests that electron transport chain complex I is inhibited during fasting. We also investigated whether mitochondrial metabolic suppression alters mitochondrial reactive oxygen species (ROS) production. In both torpor and euthermic fasting, ROS production (measured as H(2)O(2) release rate) was lower with glutamate in the presence (but not absence) of rotenone when measured at 37°C, likely reflecting inhibition at or upstream of the complex I ROS-producing site. ROS production with succinate (with rotenone) increased in torpor but not euthermic fasting, reflecting complex II inhibition during torpor only. Finally, mitochondrial ROS production was twofold more temperature sensitive than mitochondrial respiration (as reflected by Q(10) values). These data suggest that electron leak from the mitochondrial electron transport chain, which leads to ROS production, is avoided more efficiently at the lower body temperatures experienced during torpor.  相似文献   

17.
1. The metabolism of glutamate was followed by measurements of phosphoenolpyruvate production, aspartate synthesis and ammonia release, whereas the transport of glutamate across the inner membrane of kidney cortex mitochondria was studied using an oxygen electrode and the swelling technique.2. When added separately, avenaciolide and aminooxyacetate only partially inhibited both State 3 and uncoupled respiration of the mitochondria, as studied in the presence of glutamate as substrate. In contrast, the addition of both inhibitors to the reaction medium resulted in an almost complete inhibition of glutamate oxidation.3. Swelling of kidney mitochondria in an isosmotic solution of ammonium glutamate was accelerated by uncoupler and inhibited by avenaciolide, while the swelling of mitochondria in potassium glutamate was stimulated by valinomycin and inhibited by uncoupler.4. When glutamate was used as the sole substrate, inhibition of aspartate formation by aminooxyacetate resulted in a stimulation of both ammonia release and phosphoenolpyruvate production. In contrast, with glutamate plus malate as substrate an elevation of the rate of glutamate deamination on the addition of aminooxyacetate was accompanied by an inhibition of phosphoenolpyruvate synthesis in both State 3 and uncoupled conditions.5. In the presence of valinomycin to induce K+-permeability a marked enhancement of glutamate deamination was accompanied by a significant inhibition of glutamate transamination.6. Based on the presented results it was concluded that in rabbit renal mitochondria utilizing glutamate as substrate the rates of ammonia production, phosphoenolpyruvate formation and aspartate synthesis vary in response to different metabolic conditions, in which both the glutamate—H+ symport and the glutamate—aspartate exchange systems are functioning to different extents.  相似文献   

18.
Varying osmolarity with sucrose/KCl media resulted in similar effects on the oxidation of glutamate by mitochondria isolated from the livers of an elasmobranch, Raja erinacea, and a teleost, Pseudopleuronectes americanus. In both species trimethylamine oxide (TMAO) inhibited mitochondrial oxidation of glutamate. Urea penetrated the inner mitochondrial membrane of both species and equilibrated with a ratio ureai/ureao of unity. Urea had little effect on the oxidation of glutamate in both species at concentrations as high as 760 mM. Addition of urea (urea/TMAO, 2:1) did not overcome the detrimental effects of TMAO in the mitochondria of either species. In the case of the elasmobranch, the osmolarity of the urea/TMAO media giving the optimal rate of respiration was hypoosmotic with respect to the intracellular osmolarity. The rate of glutamate oxidation steadily declined as osmolarity increased above this value. Assuming the osmotic profile obtained with the urea/TMAO (2:1) medium resembled most closely the in vivo situation, higher rates of oxidation or organic solutes at low osmolarity would help deplete the cell of these solutes and could contribute to cell volume regulation during hypoosmotic stress. It is suggested that two broad classes of intracellular solutes can be defined based on their effects on mitochondrial respiration. Solutes such as K+, C1-, and TMAO penetrate the inner mitochondrial membrane slowly or not at all. Increasing concentrations of these solutes result in lower rates of oxidation. This capacity may be important in regulating intracellular levels of organic solutes during osmotic stress. Solutes such as urea rapidly penetrate the cell and inner mitochondrial membrane reducing the mitochondrial volume changes associated with osmotic stress. The known detrimental effects of urea on protein structure may prevent its exclusive use as an intracellular osmotic effector.  相似文献   

19.
Effect of acetoacetate on 3-hydroxybutyrate oxidation by rat liver mitochondria is described. State 3 respiration is inhibited by acetoacetate, while state 4 respiration is not inhibited, though cytochrome c reduction was decreased. Acetoacetate is also non-competitive inhibitor of 3-hydroxybutyrateoxidase and 3-hydroxybutyrate dehydrogenase activity in frozen-thawed mitochondria. The results are discussed in terms of the thermodynamic hypothesis and control strength method.  相似文献   

20.
The uptake of ethidium bromide by rat liver mitochondria and its effect on mitochondria, submitochondrial particles, and F1 were studied. Ethidium bromide inhibited the State 4-State 3 transition with glutamate or succinate as substrates. With glutamate, ethidium bromide did not affect State 4 respiration, but with succinate it induced maximal release of respiration. These effects appear to depend on the uptake and concentration of the dye within the mitochondrion. In submitochondrial particles, the aerobic oxidation of NADH is much more sensitive to ethidium bromide than that of succinate. Ethidium bromide partially inhibited the ATPase activity of submitochondrial particles and of a soluble F1 preparation. Ethidium bromide behaves as a lipophilic cation which is concentrated through an energy-dependent process within the mitochondria, producing its effects at different levels of mitochondrial function. The ability of mitochondria to concentrate ethidium bromide may be involved in the selectivity of the dye as a mitochondrial mutagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号