共查询到20条相似文献,搜索用时 0 毫秒
1.
Olfactory bulbs contain dendrodendritic synapses, which occur between granule cells and mitral cells, and gamma-aminobutyric acid (GABA) is thought to act as an inhibitory neurotransmitter at these synapses. Synaptosomes derived from the dendrodendritic synapses of the olfactory bulb were shown previously to contain considerable L-glutamate decarboxylase activity. The subcellular distribution and binding parameters of [3H]GABA and [3H]muscimol binding sites have now been determined in the rat olfactory bulb. Of all fractions examined, crude synaptic membranes (CSM) prepared from the dendrodendritic synaptosomes were shown to have the highest specific binding activity and accounted for nearly all of the total binding activity for both ligands. The specific binding activities for [3H]GABA and for [3H]muscimol were greatly increased after treating the CSM with 0.05% Triton X-100. Binding was shown to be Na+-independent, reversible, pharmacologically specific, and saturable. High- and low-affinity sites were detected for both ligands, and both classes of sites had appreciably lower KD values for muscimol (KD1 = 3.1 nM, KD2 = 25.1 nM) than for GABA (KD1 = 8.6 nM; KD2 = 63.7 nM). The amounts of the high-affinity binding sites for muscimol and GABA were similar (Bmax = 1.7 and 1.5 pmol/mg protein, respectively). The results of the present experiments indicate that the GABA and muscimol binding sites represent the GABA postsynaptic receptor, presumably on mitral cell dendrites, and provide further support for the hypothesis that GABA functions as a neurotransmitter at the dendrodendritic synapses in the olfactory bulb. 相似文献
2.
: The olfactory bulbs in the CNS contain reciprocal dendrodendritic synapses between the granule cells and the secondary dendrites of mitral cells. Based on pharmacologic and electrophysiologic evidence, these synapses are believed to utilize GABA as an inhibitory neurotransmitter. A dendrodendritic synaptosomal fraction has been isolated from rat olfactory bulbs. The upper portion (PB) of the crude nuclear pellet contains 30–40% of the GAD (glutamate decarboxylase) activity of the olfactory bulb homogenate. When PB is purified on a discontinuous sucrose density gradient, 78–85% of the GAD activity is localized to the region containing the dendrodendritic synaptosomes, which were identified by transmission electron microscopy. The presence of a substantial proportion of GAD, the enzyme that catalyzes synthesis of GABA, in the DDS provides neurochemical support for the hypothesis that GABA functions at the reciprocal dendrodendritic synapses in the olfactory bulb. 相似文献
3.
Abstract: We have studied the effect of glutamate and the glutamatergic agonists N-methyl-d -aspartate (NMDA), kainate, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on [3H]GABA release from the external plexiform layer of the olfactory bulb. The GABA uptake blocker nipecotic acid significantly increased the basal [3H]GABA release and the release evoked by a high K+ concentration, glutamate, and kainate. The glutamate uptake blocker pyrrolidine-2,4-dicarboxylate (2,4-PDC) inhibited by 50% the glutamate-induced [3H]GABA release with no change in the basal GABA release. The glutamatergic agonists NMDA, kainate, and AMPA also induced a significant [3H]GABA release. The presence of glycine and the absence of Mg2+ have no potentiating effect on NMDA-stimulated release; however, when the tissue was previously depolarized with a high K+ concentration, a significant increase in the NMDA response was observed that was potentiated by glycine and inhibited by the NMDA receptor antagonist 2-amino-5-phosphonoheptanoic acid (AP-7). The kainate and AMPA effects were antagonized by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by AP-7. The glutamate effect was also inhibited by CNQX but not by the NMDA antagonist 2-amino-5-phosphonopentanoic acid (AP-5); nevertheless, in the presence of glycine, [3H]GABA release evoked by glutamate was potentiated, and this response was significantly antagonized by AP-5. Tetrodotoxin inhibited glutamate- and kainate-stimulated [3H]GABA release but not the NMDA-stimulated release. The present results show that in the external plexiform layer of the olfactory bulb, glutamate is stimulating GABA release through a presynaptic, receptor-mediated mechanism as a mixed agonist on NMDA and non-NMDA receptors; glutamate is apparently also able to induce GABA release through heteroexchange. 相似文献
4.
Abstract: The dipeptide carnosine (β-alanyl-L-histidine) has been proposed as a neurotransmitter in the mammalian olfactory pathway. Therefore, the efflux of in vivo -synthesized [14 C]carnosine from mouse olfactory bulb synaptosomes was investigated. Carnosine was found to be released from the olfactory bulb synaptosomes by two mechanisms. The first is a slow spontaneous process that is independent of depolarization. The rate of this release was doubled in the presence of 1 m M external carnosine. Release by the second mechanism was markedly stimulated in the presence of calcium by depolarization with either 60 m M K+ or 300 μ M veratridine. Omission of calcium abolished the stimulatory effect of both of these agents. Further, blockage of the veratridine-induced depolarization by tetrodotoxin also inhibited carnosine release. These results are consistent with the hypothesis that carnosine acts as a neurotransmitter in the mouse olfactory pathway. 相似文献
5.
Abstract: In membranes of rat olfactory bulb, a brain region in which muscarinic agonists increase cyclic AMP formation, the muscarinic stimulation of guanosine 5'- O -(3-[35 S]thiotriphosphate) ([35 S]GTPγS) binding was used as a tool to investigate the receptor interaction with the guanine nucleotide-binding regulatory proteins (G proteins). The stimulation of the radioligand binding by carbachol (CCh) was optimal (threefold increase) in the presence of micromolar concentrations of GDP and 100 m M NaCl. Exposure to N -ethylmaleimide and pertussis toxin markedly inhibited the CCh effect, whereas it increased the relative stimulation of [35 S]GTPγS binding elicited by pituitary adenylate cyclase-activating polypeptide (PACAP). On the other hand, membrane treatment with cholera toxin curtailed the PACAP stimulation of [35 S]GTPγS binding but did not affect the response to CCh. Like CCh, a number of cholinergic agonists stimulated [35 S]GTPγS binding in a concentration-dependent and saturable manner. The antagonist profile of the muscarinic stimulation of [35 S]GTPγS binding was highly correlated with that displayed by the muscarinic stimulation of adenylyl cyclase. These data indicate that the olfactory bulb muscarinic receptors couple to Gi /Go , but not to Gs , and support the possibility that activation of Gi /Go mediates the stimulatory effect on adenylyl cyclase activity. 相似文献
6.
Chemical and Surgical Lesions of Rat Olfactory Bulb: Changes in Thyrotropin-Releasing Hormone and Other Systems 总被引:1,自引:0,他引:1
N. A. Sharif 《Journal of neurochemistry》1988,50(2):388-394
Stereotaxic injection of kainic acid (15 micrograms) into rat olfactory bulbs was accompanied by a 53% (n = 4; p less than 0.02) depletion of endogenous thyrotropin-releasing hormone (TRH) as compared to sham-operated controls 2 weeks postlesion. TRH levels remained unaltered in three other caudal regions. Bulbar kainate lesions produced a 58% (n = 5; p less than 0.001) decrease in TRH receptor binding capacity without affecting the receptor affinity. Kainate lesions also reduced bulbar muscarinic and benzodiazepine receptors by 60% and 48%, respectively. Again, no changes in TRH receptors were apparent in six other brain areas after bulbar kainate treatment. Injection of the dopaminergic neurotoxin, 6-hydroxydopamine (8 micrograms), into rat bulbs decreased TRH receptors by 35% (n = 4; p less than 0.05) 1 week postlesion. One month after surgical bulbectomy, TRH and TRH receptor levels in a number of brain areas were unaltered compared to those of control animals. These studies suggest that TRH in the olfactory bulb originates intrinsically and may be produced predominantly for local use. Secondly, TRH receptors in the bulb appear to be postsynaptically localized on intrinsic neurons, although a small proportion are also associated with presynaptic elements of dopaminergic noradrenergic neurons. Bulbar TRH receptors exhibited nanomolar affinity and a pharmacological selectivity akin to that of the pituitary gland and other brain regions. 相似文献
7.
Biochemical Studies of Olfaction: Binding Specificity of Odorants to a Cilia Preparation from Rainbow Trout Olfactory Rosettes 总被引:3,自引:0,他引:3
Cilia isolated from the olfactory epithelium (olfactory rosettes) of rainbow trout (Salmo gairdneri) bind amino acids, which are odor stimuli to this species. We demonstrate that L-threonine, L-serine, and L-alanine bind to a common site, TSA, in the cilia preparation. All possible mixtures of two of the amino acids as competitors, with the third as the 3H-labeled ligand, were studied. The effect of two combined (unlabeled) competitors was always substantially less than additive compared with their actions singly. Along with additional inhibition studies using mixtures of inhibitors, the data show that the three odorants must interact with at least one common binding site, TSA. Binding of L-[3H]lysine to site L was unaffected by addition of L-threonine, L-serine, or L-alanine, establishing its independence from site TSA. L-Arginine inhibited binding of L-[3H]lysine, showing that both of these basic amino acids interact with site L. The data establish the presence, in trout olfactory cilia, of at least two separate and noninteracting populations of odorant binding sites, TSA and L. 相似文献
8.
9.
The effect of L-cysteine sulfinic acid (CSA) and L-homocysteic acid (HCA) on the release of tritiated -amino butyric acid ([3H]GABA), from the external plexiform layer (EPL) of the rat olfactory bulb, was compared with that of glutamate. These amino acids induced release of GABA was strongly inhibited by the glutamate uptake blocker, pyrrolidine-2,4-dicarboxylate (2,4,PDC) (50 M), while it was not inhibited by the specific GABA uptake blockers nipecotic acid (0.5 mM) or NO-711 (5M). Only the HCA induced GABA release was 60% inhibited by -alanine (0.5 mM), a glial GABA uptake blocker and 78% by the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) (100 M). The non-NMDA receptor antagonists 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX) up to 500 M had no effect on HCA or CSA stimulated GABA release. These results bring evidence for an excitatory role of HCA and CSA together with glutamate on GABAergic neuronal or glial elements, in the olfactory bulb. This role could be mediated through the reversal of the glutamate or/and the glial GABA transporter and through the activation of a NMDA type receptor. 相似文献
10.
We have studied the glutamate modulation of gamma-[3H]aminobutyric acid ([3H]GABA) release from GABAergic dendrites of the external plexiform layer of the olfactory bulb and from GABAergic axons of the substantia nigra. In the olfactory bulb, [3H]GABA release was induced by high K+ and kainate, and not by aspartate and glutamate alone. However, when the tissue was conditioned by a previous K+ depolarization, glutamate and aspartate caused [3H]GABA release. The effect of glutamate was significantly enhanced when the GABA uptake mechanism was blocked by nipecotic acid. N-Methyl-D-aspartate and quisqualate did not cause [3H]GABA release under the same conditions. The acidic amino acid receptor antagonist 2-amino-4-phosphonobutyric acid and the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonovaleric acid significantly inhibited the K+-glutamate- and the kainate-induced [3H]GABA release. Mg2+ (5 mM), which blocks the N-methyl-D-aspartate receptors, significantly inhibited the K+-glutamate-induced but not the kainic acid-induced [3H]GABA release. The K+-glutamate-stimulated release, but not the K+-stimulated [3H]GABA release, was strongly inhibited by Na+-free solutions or by 300 nM tetrodotoxin. Apparently the glutamate-induced release of [3H]GABA occurs through an interneuron because it is dependent on the presence of nerve conduction. In the substantia nigra no [3H]GABA release was elicited by any of the glutamate agonists tested. The present results clearly differentiate between the effects of glutamate on the release of [3H]GABA from the substantia nigra and from the olfactory bulb.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
In rat olfactory bulb homogenate, carbachol stimulated adenylate cyclase activity in a concentration-dependent manner (EC50 = 1.1 microM). The carbachol stimulation occurred fully in membranes that had been prepared in the presence of 1 mM EGTA and incubated in a Ca2(+)-free enzyme reaction medium. Under these conditions, exogenous calmodulin (1 microM) failed to stimulate adenylate cyclase activity. In miniprisms of olfactory bulb, carbachol (1 mM) increased accumulation of inositol phosphates, but this response was markedly reduced in a Ca2(+)-free medium. Moreover, the carbachol stimulation of adenylate cyclase activity was not affected by staurosporine at a concentration (1 microM) that completely blocked the stimulatory effect of phorbol 12-myristate 13-acetate, an activator of Ca2+/phospholipid-dependent protein kinase. Quinacrine, a nonselective phospholipase A2 inhibitor, reduced the carbachol stimulation of adenylate cyclase activity, but this inhibition appeared to be competitive with a Ki of 0.2 microM. Nordihydroguaiaretic acid and indomethacin, two inhibitors of arachidonic acid metabolism, failed to affect the carbachol response. These results indicate that in rat olfactory bulb, muscarinic receptors stimulate adenylate cyclase activity through a mechanism that is independent of Ca2+ and phospholipid hydrolysis. 相似文献
12.
Fractions and subcellular structures were prepared from rat brain homogenate and their purity was assessed using enzyme markers, gamma-aminobutyric acid binding, DNA content, and electron microscopy. Insulin binding was highest on the plasma membrane preparations and approximately 50% less so on brain homogenate crude mitochondrial (P2), myelinated axon, and synaptosome preparations. Very low levels of binding were found on mitochondria and nuclei. Differences in binding between fractions were due to numbers of binding sites, and not variable binding affinity. There was a close relationship between insulin binding and the activity of Na/K ATPase (E.C. 3.6.1.4) in all fractions (r = 0.98). Insulin binding to the P2 was compared with plasma membrane fractions in seven brain regions, and the results demonstrated the same close relationship between insulin binding and plasma membrane content in all regions except hypothalamus. Plasma membrane insulin binding was well represented by the binding on P2 membranes in all regions except hypothalamus and brainstem. It was concluded that insulin binding is distributed evenly over the surface of brain cells and is not increased on nerve endings. 相似文献
13.
Fran?ois O. David Etienne Hugues Tristan Cenier Nicolas Fourcaud-Trocmé Nathalie Buonviso 《PLoS computational biology》2009,5(10)
Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism. 相似文献
14.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5 ]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5 ]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+ /CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase. 相似文献
15.
Nabhen SL Perfume G Battistone MA Rossi A Abramoff T Bianciotti LG Vatta MS 《Neurochemical research》2009,34(5):953-963
The olfactory system in rats is part of the limbic region with extensive afferent connections with brain areas involved in
the regulation of behaviour and autonomic responses. The existence of the endothelin system and catecholaminergic neurons
in the olfactory bulb suggests that endothelins may modulate noradrenergic transmission and diverse olfactory mediated processes.
In the present work we studied the effect of endothelin-1 and -3 on neuronal norepinephrine release and the short-term regulation
of tyrosine hydroxylase in the olfactory bulb. Results showed that both endothelins increased tyrosine hydroxylase activity
through the activation of a non-conventional endothelin G-protein coupled receptor, coupled to the stimulation of protein
kinase A and C, as well as Ca2+/calmodulin-dependent protein kinase II. On the other hand, neither endothelin-1 nor endothelin-3 modified tyrosine hydroxylase
total protein levels, but both peptides increased the phosphorylation of serine residues of the enzyme at sites 19 and 40.
Furthermore, endothelins enhanced norepinephrine release in olfactory neurons suggesting that this event may contribute to
increased tyrosine hydroxylase activity by reducing the feedback inhibition. Taken together present findings show a clear
interaction between the endothelin system, and the catecholaminergic transmission in the olfactory bulb. Additional studies
are required to evaluate the physiological functions regulated by endothelins at this brain level. 相似文献
16.
Insulin receptors were detected in a variety of rat neuroblastoma and glioma cell lines. The binding of 125I-insulin to B103 neuroblastoma cells had characteristics typical of insulin receptors in other tissues, including high affinity for insulin, low affinity for insulin-like growth factor I (IGF-I), and curvilinear Scatchard plots. Using photoaffinity labeling procedures and sodium dodecyl sulfate (SDS) gel electrophoresis to analyze the subunit structure of insulin receptors in B103 cells, the predominantly labeled protein had an apparent molecular weight of 125K and the mobility of this protein was shifted after removal of sialic acid residues. On the basis of size and susceptibility to neuraminidase, the insulin binding subunit in neuroblastoma cells was identical to the alpha-subunit of insulin receptors in adipocytes and different from the 115K subunit found in brain. The presence of an "adipocyte" form of the insulin receptor in clonal cells derived from brain is probably a consequence of transformation and results from more extensive oligosaccharide processing of the 115K receptor expressed in normal brain cells. The fully glycosylated receptors in neuroblastoma cells were capable of exerting functions typical of insulin receptors in adipocytes such as internalization of insulin and stimulation of glucose transport. 相似文献
17.
Guerra-Araiza C Miranda-Martinez A Neri-Gómez T Camacho-Arroyo I 《Neurochemical research》2008,33(8):1568-1573
Sex steroids exert multiple functions in the central nervous system. They modulate responses to olfactory information in mammals
but their participation in the regulation of neurotransmission in the olfactory bulb is unknown. We studied by Western blot
the effects of estradiol (E2), progesterone (P4), and allopregnanolone (Allo) on the content of glutamic acid decarboxylase
(GAD), γ-aminobutyric acid A receptor α-2 subunit (GABAAR α-2), glutamate receptor 2/3 (GlutR 2/3), and tyrosine hydroxylase (TH) in the olfactory bulb of gonadectomized male rats.
GAD content was increased by all steroids administered alone. Interestingly, progestins reduced E2 effects on GAD content.
Steroids increased the content of TH and GABAAR α-2. In contrast, GlutR 2/3 content was decreased by E2 and P4, whereas Allo did not modify it. These results suggest that
estrogens and progestins regulate olfactory bulb functions in the male rat by modulating the expression of key proteins involved
in several neurotransmission systems.
Special issue article in honor of Dr. Ricardo Tapia. 相似文献
18.
Abstract: In the olfactory bulb, muscarinic receptors exert a bimodal control on cyclic AMP, enhancing basal and Gs -stimulated adenylyl cyclase activities and inhibiting the Ca2+ /calmodulin- and forskolin-stimulated enzyme activities. In the present study, we investigated the involvement of G protein βγ subunits by examining whether the muscarinic responses were reproduced by the addition of βγ subunits of transducin (βγt ) and blocked by putative βγ scavengers. Membrane incubation with βγt caused a stimulation of basal adenylyl cyclase activity that was not additive with that produced by carbachol. Like carbachol, βγt potentiated the enzyme stimulations elicited by vasoactive intestinal peptide and corticotropin-releasing hormone. RT-PCR analysis revealed the expression of mRNAs encoding both type II and type IV adenylyl cyclase, two isoforms stimulated by βγ synergistically with activated Gs . In addition, βγt inhibited the Ca2+ /calmodulin- and forskolin-stimulated enzyme activities, and this effect was not additive with that elicited by carbachol. Membrane incubation with either one of two βγ scavengers, the GDP-bound form of the α subunit of transducin and the QEHA fragment of type II adenylyl cyclase, reduced both the stimulatory and inhibitory effects of carbachol. These data provide evidence that in rat olfactory bulb the dual regulation of cyclic AMP by muscarinic receptors is mediated by βγ subunits likely acting on distinct isoforms of adenylyl cyclase. 相似文献
19.
Effect of Lesions of the Olfactory Bulb on the Levels of Amino Acids and Related Enzymes in the Olfactory Cortex of the Guinea Pig 总被引:1,自引:1,他引:1
Abstract: Olfactory bulb removal and consequential degeneration of the lateral olfactory tract led to a decreasein the levels of glutaminase and malate dehydrogenase inthe ipsilateral olfactory cortex. These changes in enzyme activity may account for the well established decrease inthe levels of aspartate and glutamate in the olfactory cortex following ipsilateral bulbectomy. The level of glutamine synthetase, a glial marker enzyme, was slightly-increased while the activities of glutamate decarboxylase, glutamate dehydrogenase, and glutamate oxaloacetic transaminase were unchanged. 相似文献
20.
Optimal functioning of the olfactory system is critical for survival of fossorial rodents in their subterranean lifestyle. This study examines the structure of the olfactory mucosa and olfactory bulb of two fossorial rodents exhibiting distinct social behaviors, the East African root rat and the naked mole rat. The social naked mole rat displayed simpler ethmoturbinates consisting of dorsomedial and broad discoid/flaplike parts that projected rostrally from the ethmoid bone. In the solitary root rat however, the ethmoturbinates were highly complex and exhibited elaborate branching which greatly increased the olfactory surface area. In addition, when correlated with the whole brain, the volume of the olfactory bulbs was greater in the root rat (4.24 × 10?2) than in the naked mole rat (3.92 × 10?2). Results of this study suggest that the olfactory system of the root rat is better specialized than that of the naked mole rat indicating a higher level of dependence on this system since it leads a solitary life. The naked mole rat to the contrary may have compensated for its relatively inferior olfactory system by living in groups in a social system. These findings demonstrate that structure of the olfactory system of fossorial mammals is dictated by both behavior and habitat. 相似文献