首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: We investigated the pathophysiological role of the renal adrenomedullin (AM) system, including the ligand, receptor, and amidating activity, in severe hypertensive rats. METHOD: We studied three groups: control Wistar Kyoto rats (WKY), spontaneously hypertensive stroke-prone rats (SHR-SP), and diuretic-treated SHR-SP. We measured AM-mature, active form, and AM-total (active form+inactive form) in plasma and renal tissues, and mRNA levels of AM and AM receptor system components such as calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP) 2, and RAMP3 in renal tissues. RESULTS: SHR-SP had higher blood pressure, plasma neurohumoral factors, and lower renal function than WKY. SHR-SP had higher AM-mature and AM-total levels in plasma and renal tissues than WKY. Although the plasma AM-mature/AM-total ratio was similar in the two groups, AM-mature/AM-total ratio in renal tissues was higher in SHR-SP than in WKY. In addition, mRNA levels of AM in the renal cortex and medulla and the mRNA levels of CRLR, RAMP2, and RAMP3 in the renal cortex were higher in SHR-SP than in WKY. Chronic diuretic treatment decreased blood pressure and improved kidney function and neurohumoral factors, with reductions in plasma and renal AM system. CONCLUSION: Upregulation of circulating and renal AM system may modulate pathophysiology in SHR-SP.  相似文献   

2.
Acute i.v. administration of 15 mg/kg acebutolol in normotensive (WKY), Okamoto (SHR) and Okamoto stroke-prone (SHR-SP) awake rats resulted in weak effects on blood pressure and in bradycardia more marked in SHR-SP. Thirty minutes after i.v. administration, lung and renal uptake of [14C]acebutolol was reduced in SHR compared to other rats. Muscle uptake was higher in SHR and blood concentration was higher in SHR-SP. Brain levels were low and similar in all rats. Plasma protein binding was identical in all rats. These results are discussed according to the characteristics of the three strains studied.  相似文献   

3.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

4.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

5.
To test the effect of a high dietary calcium intake on blood pressure, we fed stroke-prone spontaneously hypertensive (SHR-SP) and Wistar-Kyoto rats (WKY) diets containing (a) 0.25% Ca/0.08% Mg, (b) 4.0% Ca/0.02% Mg, and (c) 4.0% Ca/0.08% mg, beginning at 6 weeks of age. SHR-SP and WKY rats receiving 4% Ca with the lower Mg content had lower blood pressures, hypomagnesemia, and hypomagnesuria, and grew poorly. SHR-SP receiving 4% Ca and the higher Mg diet had blood pressures no different from those of rats receiving the 0.25% Ca diet, in spite of having lower body weights. Rubidium flux studies in erythrocytes were not influenced by Ca or Mg in the diets. Plasma phosphate values were moderately reduced in rats receiving 4% Ca diets. Epinephrine and norepinephrine values were higher in SHR-SP than in WKY rats. Norepinephrine increased with stress in both strains, independent of diet. Epinephrine values were lower in SHR-SP receiving the 4% Ca diets and showed less of an increase with stress compared to SHR-SP receiving the 0.25% Ca diet. After 26 weeks of diets, SHR-SP and WKY rats were given 0.9% NaCl in their drinking water. NaCl increased blood pressure in SHR-SP irrespective of Ca content of the diet. These data suggest that a high Ca diet influences Mg homeostasis and adrenal medullary function in SHR-SP. Further, SHR-SP appear resistant to any blood pressure lowering effect of Ca irrespective of NaCl intake.  相似文献   

6.
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR.  相似文献   

7.
We were able to show that spontaneously hypertensive stroke-prone rats (SHR-SP) have a lower number of glucocorticoid receptors (P-value is of borderline significance, 0.01 greater than P less than 0.05) with a highly significant lower Kd (P less than 0.0005), i.e higher affinity in their mononuclear leukocytes, compared to normotensive Wistar-Kyoto rats (WKY). The plasma levels of corticosterone, aldosterone and 18-hydroxycorticosterone of the two strains do not differ.  相似文献   

8.
Bhutto IA  Amemiya T 《Life sciences》1999,64(3):PL27-PL39
The effects of the long-term oral angiotensin-converting enzyme inhibitor, cilazapril, on retinal circulation in stroke-prone spontaneously hypertensive (SHR-SP) rats were assessed by scanning electron microscopy (SEM), corrosion casts and transmission electron microscopy (TEM). Two groups of 20 male SHR-SP rats were compared. One group was treated with 10 mg/kg/day of cilazapril from 4 to 40 weeks of age, and the other group received no treatment. A third group of male Wistar-Kyoto (WKY) rats served as age-matched controls. At regular intervals the rats were weighed, and their systolic blood pressure was measured. Cilazapril normalized systolic arterial pressure to 121+/-2.7 mm Hg (SD) in the treated SHR-SP rats. There was no significant difference in body weight between the two groups of SHR-SP. In the 40-week-old SHR-SP rats without treatment corrosion cast and SEM revealed hypertensive retinal vascular changes. In the 40-week-old SHR-SP rats treated with cilazapril, these changes were markedly decreased to the level seen in WKY rats. The differences in caliber of retinal capillaries between the treated SHR-SP and untreated SHR-SP rats were statistically significant (p<.0001). TEM in the cilazapril-treated SHR-SP rats revealed intact basement membranes (0.29+/-0.057 microm) of the endothelial cells and pericytes, but in the untreated SHR-SP rats the basement membrane was thickened (0.51+/-0.123 microm) (p<.0001) and the pericytes damaged. Our results show that the long-term administration of cilazapril decreased systolic arterial pressure to a nearly normal level and prevented hypertensive retinal vascular changes, probably by improving endothelial function. The effects of cilazapril on the retinal vasculature are described for the first time. SEM of corrosion casts is a valuable technique for showing the effects of some drugs on the vasculature easily, precisely and three-dimensionally.  相似文献   

9.
An angiotensin-converting enzyme inhibitor (ACE-I) reduces cardiac remodeling and a bradykinin B2 receptor (B2R) antagonist partially abolishes this ACE-I effect. However, bradykinin has two different types of receptor, the B1 receptor (B1R) and B2R. Although B1R is induced under several pathological conditions, including hypertension, the role of cardiac B1R in hypertension is not clear. We therefore investigated the role of cardiac B1R in stroke-prone spontaneously hypertensive rats (SHR-SP) and Wistar-Kyoto (WKY) rats. The B1R mRNA expression level in the heart was significantly higher in SHR-SP than in WKY rats. Chronic infusion of a B1R antagonist for 4 weeks significantly elevated blood pressure and left-ventricular weight of SHR-SP. Morphological analysis indicated that cardiomyocyte size and cardiac fibrosis significantly increased after administration of the B1R antagonist. The phosphorylation of mitogen-activated protein (MAP) kinases, including ERK, p38, and JNK, was significantly increased in the hearts of SHR-SP rats receiving the B1R antagonist. The TGF-beta1 expression level was significantly increased in SHR-SP rats treated with the B1R antagonist compared to that in WKY rats. The B1R antagonist significantly increased phosphorylation of Thr495 in endothelial nitric oxide synthase (eNOS), which is an inhibitory site of eNOS. These results suggest that the role of B1R in the heart may be attenuation of cardiac remodeling via inhibition of the expression of MAP kinases and TGF-beta1 through an increase in eNOS activity in a hypertensive condition.  相似文献   

10.

Background

Dihydroartemisinin (DHA), a powerful anti-malarial drug, has been used as monotherapy and artemisinin-based combination therapy (ACT) for more than decades. So far, however, the tissue distribution and metabolic profile of DHA data are not available from animal and humans.

Methods

Pharmacokinetics, tissue distribution, mass balance, and elimination of [14C] DHA have been studieded in rats following a single intravenous administration. Protein binding was performed with rat and human plasma. Drug concentrations were obtained up to 192 hr from measurements of total radioactivity and drug concentration to determine the contribution by the parent and metabolites to the total dose of drug injected from whole blood, plasma, urine and faecal samples.

Results

Drug was widely distributed after 1 hr and rapidly declined at 24 hr in all tissues except spleen until 96 hrs. Only 0.81% of the total radioactivity was detected in rat brain tissue. DHA revealed a high binding capacity with both rat and human plasma proteins (76–82%). The concentration of total radioactivity in the plasma fraction was less than 25% of that in blood total. Metabolism of DHA was observed with high excretion via bile into intestines and approximately 89–95% dose of all conjugations were accounted for in blood, urine and faeces. However, the majority of elimination of [14C] DHA was through urinary excretion (52% dose). The mean terminal half-lives of plasma and blood radioactivity (75.57–122.13 h) were significantly prolonged compared with that of unchanged DHA (1.03 h).

Conclusion

In rat brain, the total concentration of [14C] was 2-fold higher than that in plasma, indicating the radioactivity could easily penetrate the brain-blood barrier. Total radioactivity distributed in RBC was about three- to four-fold higher than that in plasma, suggesting that the powerful anti-malarial potency of DHA in the treatment of blood stage malaria may relate to the high RBC binding. Biliary excretion and multiple concentration peaks of DHA have been demonstrated with high urinary excretion due to a most likely drug re-absorption in the intestines (enterohepatic circulation). The long lasting metabolites of DHA (> 192 hr) in the rats may be also related to the enterohepatic circulation.  相似文献   

11.
We have performed studies on blood hormone dynamics following intravenous administration of acebutolol, a newly synthesized beta-blocker, and its direct action on the adrenal medulla in vitro. Intravenous injection of acebutolol into anesthetized dogs almost doubled the plasma adrenaline and noradrenaline concentrations within 5 to 15 minutes, while renin activity was reduced to approximately two-thirds of the pre-administration level. When arrhythmia was induced in dogs with ouabain, the plasma adrenaline and noradrenaline levels increased to 220 +/- 109 and 392 +/- 84 pg/ml, respectively, from the basal levels of 44 +/- 24 and 140 +/- 43 pg/ml. The restoration of sinus rhythm following the administration of acebutolol was accompanied by a further increase in the plasma adrenaline and noradrenaline levels to 797 +/- 364 and 1226 +/- 263 pg/ml, respectively. A perifusion experiment indicated that acebutolol directly accelerated catecholamine release from the adrenal medulla in pigs.  相似文献   

12.
H N Bhargava  S Das  M Bansinath 《Peptides》1987,8(2):231-235
The binding of [3H] [3-MeHis2] thyrotropin releasing hormone [( 3H]MeTRH) to brain membranes prepared from 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [3H]MeTRH bound specifically to rat brain membranes at a single high affinity site. The density (Bmax value) of [3H]MeTRH binding sites was significantly greater (28%) in SHR rats compared to WKY rats. The apparent dissociation constants (Kd values) for the binding of [3H]MeTRH in SHR and WKY rats did not differ. Binding in the various brain regions revealed that the density of [3H]MeTRH was highest in the hypothalamus followed in decreasing order by pons + medulla, midbrain, cortex and striatum. The binding of [3H]MeTRH was approximately 25% greater in cortex, hypothalamus and striatum of SHR rats in comparison to WKY rats. The binding in pons + medulla, midbrain and pituitary of SHR and WKY rats did not differ. To assess the significance of increased binding sites for [3H]MeTRH in some brain regions of SHR rats, the binding studies were carried out during normotensive and hypertensive stages of postnatal age in the two strains. In 3 and 4 week old SHR rats there was neither an increase in blood pressure nor any increase in [3H]MeTRH binding in the hypothalamus and striatum as compared to age matched WKY rats. With the development of elevated blood pressure at 6 weeks, an increase in [3H]MeTRH binding in the hypothalamus and striatum of SHR rats in comparison to the tissues from WKY rats was observed. The results provide, for the first time, evidence for a parallel increase in the density of brain TRH receptors with elevation of blood pressure, and suggest that brain TRH receptors may play an important role in the pathophysiology of hypertension.  相似文献   

13.
丁虎  周期 《生理学报》1990,42(4):379-384
The content of norepinephrine (NE) and epinephrine (E) in the brain of spontaneously hypertensive rats has proved abnormal, but the cause remained unknown. It was shown in the recent work that NE content in pons, posterior hypothalamus, nucleus caudatus and E concentration in medulla oblongata, anterior and posterior hypothalamus of 12-week old stroke-prone spontaneously hypertensive rats (SHRSP) were much higher than those of age-matched Wister-Kyoto rats (WKY). SHRSP also showed higher levels of systolic blood pressure (SBP) and brain angiotensin II (A II) than WKY. Intracerebroventricular (icv) perfusion of angiotensin-converting enzyme inhibitor captopril (20 micrograms for each time and three times for each day for four weeks) inhibited the synthesis of brain A II and reduced SBP and NE, E contents in all examined brain areas in SHRSP and WKY. However, the effects of chronically perfused captopril on SBP and brain NE, E levels in SHRSP were much more significant than in WKY. The results indicate that the modulatory effects of central renin-angiotensin system (RAS) on central adrenergic and noradrenergic system might be overactivated in SHRSP, which might partially responsible for the abnormally high levels of NE, E in some of the brain areas of SHRSP.  相似文献   

14.
The electrophoretic pattern of soluble proteins from seven rat brain regions (amygdala, cerebellum, corpus striatum, cortex, hypothalamus, medulla, and midbrain) was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Although the number of protein bands (36) was identical in all brain regions studied, there were differences in their relative densities, the greatest variation occurring in the low-molecular-weight region of the electrophoretogram. The bulk of the soluble proteins had molecular weights between 23,000 and 90,000 daltons. The medulla and amygdala showed the greatest range of protein band concentration. A large number of protein bands in the midbrain and corpus striatum showed a greater concentration of protein compared to the same bands in the other regions. A protein band that migrated with the same characteristic as albumin was found. It was consistently high in all regions, the midbrains showing a 1.5-fold greater concentration compared to other regions. Linear regression analysis of wet weight of regional brain tissue against protein concentration yielded a regression coefficient (r2) of 0.77. Midbrain and corpus striatum showed a relatively higher protein concentration: weight ratio than other regions.  相似文献   

15.
We studied the effects of N(G)-nitro-l-arginine methyl ester (L-NAME) on catecholamine levels, tyrosine hydroxylase (TH) activity, and TH mRNA levels in the adrenal medulla of spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). L-NAME (100 mg/L in drinking water) and atropine (10 mg/L in drinking water) were administered for 2 weeks. Epinephrine and norepinephrine levels, TH activity, and TH mRNA levels in the adrenal medulla of L-NAME-treated WKY were significantly decreased. These parameters were not significantly altered in the adrenal medulla of L-NAME-treated SHR. Nitrite/nitrate levels in the adrenal medulla of L-NAME-treated WKY were significantly decreased; however, no significant change in L-NAME-treated SHR was observed. Ca(2+)-dependent nitric oxide synthase (NOS) activity in the adrenal medulla of SHR was significantly decreased compared to that of WKY. TH mRNA levels in L-NAME + atropine-treated and L-NAME-treated WKY were significantly lower than TH mRNA levels in control WKY. These results suggest that nitric oxide in the adrenal medulla may enhance the catecholamine biosynthetic pathway via increased TH mRNA expression. Our results also suggest that this effect is suppressed in SHR due to decreased NOS activity in the adrenal medulla.  相似文献   

16.
Uptake kinetics of zidovudine into cerebrospinal fluid (CSF) and brain tissue were determined in adult Sprague Dawley male rats after single intravenous injection of 6.7 mg/kg (25 mumol/kg). The drug kinetics in plasma followed biexponential disposition with an initial distribution half-life of approximately 11 minutes and an elimination half-life of 40 minutes. Over the plasma concentration range of 0.2 to 10 micrograms/ml, the cerebrospinal fluid to plasma ratio averaged 14.8 +/- 1.9% whereas the mean brain tissue to plasma ratio was 8.2 +/- 1.2% (uncorrected) or 2.3 +/- 1.8% (corrected) for the brain vascular space contribution. Simultaneous nonlinear regression analysis of brain, CSF and plasma concentration data indicate that the overall rate constant for efflux of drug from brain is approximately 75-fold higher and from CSF is 8-fold higher than the respective rate constants for influx. Thus, the ratio of the efflux to influx appears to be the predominant factor in determining the net accumulation of drug into CSF and brain parenchymal tissue.  相似文献   

17.
To clarify the involvement of phospholipase D (PLD) in the mechanism underlying genetically-induced hypertension, we investigated the activity and expression levels of PLD in tissues taken from spontaneously hypertensive rats (SHR), and their normotensive controls, Wistar-Kyoto rats (WKY). The ADP-ribosylation factor 3 (ARF3)-dependent PLD activity and protein levels of PLD1 from SHR increased significantly in the brain and liver, but not in the heart and kidney, compared to those of WKY. The activity and expression of PLD were the same between the homogenated whole kidneys of the two strains; however, there were topographical differences in the expression and activity of PLD between the kidneys of the two strains. The activity and expression level of PLD gradually increased from the cortex to the inner medulla of WKY. The enzyme activity, and amount of PLD in the inner stripe of the outer medulla and in the inner medulla, was significantly lower in SHR than in WKY. Taken together, these results suggest that the distinctly distributed patterns of PLD in the kidney may be associated with differential signal transduction pathways that are involved in hypertension in conjunction with an increase of PLD activity in the brain and liver.  相似文献   

18.
Two groups of adult male rats aged 15 weeks and 49 weeks, 15 rats in each group, were analysed for the concentrations of the trace elements zinc (Zn) and copper (Cu) in serum, liver, kidney, and five parts of the brain (cortex, corpus striatum, hippocampus, midbrain + medulla, and cerebellum). All organs increased in weight from 15 weeks to 49 weeks. In all parts of the brain, except for corpus striatum, there was a significant increase of the weights. The dry weight (% of wet) increased in all parts of the brain. In serum, the Zn and Cu concentrations increased from 15 weeks to 49 weeks. In the liver, both concentrations decreased and in the kidney the concentrations increased with increasing age. The Zn concentrations increased in cortex and corpus striatum and decreased in cerebellum and hippocampus. The Cu levels increased in all parts of the brain with the largest changes in corpus striatum. For rats aged 49 weeks, a significant correlation was found between the Cu concentrations of corpus striatum or midbrain + medulla and the fluid consumption. The findings of the present study reveal a dynamic age-related pattern of changes in the concentrations of Zn and Cu in different organs of the adult rat. This stresses the need of age-matching as an important control in experiment studies.  相似文献   

19.
We studied whether mitochondrial functions and Ca2+ metabolism were altered in Wistar Kyoto normotensive (WKY) and spontaneous hypertensive rats (SHR). Ca2+ uptake was decreased in SHR compared to WKY rats. Accumulation of Ca2+ was more efficient in WKY than in SHR rats. mDeltaPsi was lower in SHR compared to WKY rats. Basal complex IV activity was higher in SHR than WKY rats, whereas basal L-citrulline production, an indicator of nitric oxide synthesis, was decreased in SHR and dependent on Ca2+ concentration (p<0.05). Impact of Ca2+ was counteracted by EGTA. These data show an age-dependent decreased mitochondrial functions in brain mitochondria during hypertension.  相似文献   

20.
Experimentally induced hypertensive G-minipigs were used for assessing the antihypertensive effects of acebutolol, a cardioselective beta-adrenergic blocking agent. In the acute experiment, six females were used. Acebutolol (3 mg/kg, i.v.) alone or in combination with furosemide (1 mg/kg, i.v.) or hydralazine (1 mg/kg, i.v.) was administered through an implanted catheter. In the chronic experiments, five females received oral acebutolol (100-200 mg/day). The blood pressure, heart rate, plasma renin activity (PRA) and plasma aldosterone concentration (PAC) were used as parameters. In the acute experiment, there were no marked changes in the blood pressure or heart rate during the nondosing period. Acebutolol alone caused a marked decrease in the blood pressure and heart rate. In the two combination tests, combined administration with acebutolol and furosemide had a greater effect on the blood pressure and heart rate than did acebutolol alone. A combined acebutolol and hydralazine regimen caused a slight reduction not only in the blood pressure, but also in the heart rate compared with acebutolol alone. PRA and PAC remained essentially constant, with minor fluctuations, throughout the nondosing period. Following the injection of acebutolol alone, PRA showed an elevation with a significant rise after three hours and PAC showed a tendency to increase. PRA and PAC generally tended to increase in the case of combined administration with furosemide or hydralazine, but these tendencies were less conspicuous than with acebutolol alone. On the other hand, chronic treatment with acebutolol produced a significant decrease in the heart rate from two weeks after the administration and in the blood pressure from four weeks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号