首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In this study we show that serotonin (5-hydroxytryptamine (5-HT)) causes a rapid stimulation in glucose uptake by approximately 50% in both L6 myotubes and isolated rat skeletal muscle. This activation is mediated via the 5-HT2A receptor, which is expressed in L6, rat, and human skeletal muscle. In L6 cells, expression of the 5-HT2A receptor is developmentally regulated based on the finding that receptor abundance increases by over 3-fold during differentiation from myoblasts to myotubes. Stimulation of the 5-HT2A receptor using methylserotonin (m-HT), a selective 5-HT2A agonist, increased muscle glucose uptake in a manner similar to that seen in response to 5-HT. The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4. The stimulatory effects of 5-HT and m-HT were suppressed in the presence of submicromolar concentrations of ketanserin (a selective 5-HT2A antagonist) providing further evidence that the increase in glucose uptake was specifically mediated via the 5-HT2A receptor. Treatment of L6 cells with insulin resulted in tyrosine phosphorylation of IRS1, increased cellular production of phosphatidylinositol 3,4,5-phosphate and a 41-fold activation in protein kinase B (PKB/Akt) activity. In contrast, m-HT did not modulate IRS1, phosphoinositide 3-kinase, or PKB activity. The present results indicate that rat and human skeletal muscle both express the 5-HT2A receptor and that 5-HT and specific 5-HT2A agonists can rapidly stimulate glucose uptake in skeletal muscle by a mechanism which does not depend upon components that participate in the insulin signaling pathway.  相似文献   

5.
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias. Patients with A-T also have high incidences of type 2 diabetes mellitus. The gene mutated in this disease, ATM (A-T, mutated), encodes a protein kinase. Previous studies have demonstrated that cytoplasmic ATM is an insulin-responsive protein and a major upstream activator of Akt following insulin treatment. To further investigate the function of ATM in insulin signal transduction, insulin resistance was induced in rats by feeding them a high-fat diet. Muscle tissue of rats with insulin resistance had both dramatically reduced ATM levels and substantially decreased Akt phosphorylation at Ser473 in comparison to that of regular chow-fed controls. The decreased ATM expression suggests that ATM is involved in the development of insulin resistance through down-regulation of Akt activity. The role of ATM in activation of Akt was further confirmed in mouse embryonic fibroblast (MEF) A29 (ATM+/+) and A38 (ATM-/-) cells. In addition, insulin-mediated Akt phosphorylation in mouse L6 muscle cells was greatly reduced by KU-55933, a specific inhibitor of ATM. A 2-deoxyglucose incorporation assay showed that this inhibitor also caused a significant reduction in insulin-mediated glucose uptake in L6 cells. An immunofluorescence experiment demonstrated that in L6 cells transfected with wild-type (WT) ATM, insulin caused a dramatic increase of the cell surface glucose transporter 4 (GLUT4), while in cells transfected with kinase-dead (KD) ATM, translocation of GLUT4 to the cell surface in response to insulin was markedly inhibited.  相似文献   

6.
7.
The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.  相似文献   

8.
Expression of rat glucose transporter-5 (GLUT5) is tightly regulated during development. Expression and activity are low throughout the suckling and weaning stages, but perfusion of the small intestinal lumen with fructose solutions during weaning precociously enhances GLUT5 activity and expression. Little is known, however, about the signal transduction pathways involved in the substrate-induced precocious GLUT5 development. We found that wortmannin and LY-294002, inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) specifically inhibited the increase in fructose uptake rate and brush-border GLUT5 protein abundance but not GLUT5 mRNA abundance. Perfusion of EGF, an activator of PI3-kinase, also resulted in a marked wortmannin-inhibitable increase in fructose uptake. Perfusion of fructose for 4 h increased cytosolic immunostaining of phosphatidylinositol-3,4,5-triphosphate (PIP(3)), the primary product of PI3-kinase, mainly in the mid- to upper-villus regions in which the brush-border membrane also stained strongly with GLUT5. Perfusion of glucose for 4 h had little effect on fructose or glucose uptake and PIP(3) or GLUT5 staining. SH-5, an Akt inhibitor, prevented the increase in fructose uptake and GLUT5 protein induced by fructose solutions, and had no effect on glucose uptake. The PI3-kinase/Akt signaling pathway may be involved in the synthesis and/or recruitment to the brush border of GLUT5 transporters by luminal fructose in the small intestine of weaning rats. Increases in fructose transport during the critical weaning period when rats are shifting to a new diet may be modulated by several signaling pathways whose cross talk during development still needs to be elucidated.  相似文献   

9.
10.
Fructose is a major dietary sugar, which is elevated in the serum of diabetic humans, and is associated with metabolic syndromes important in the pathogenesis of diabetic complications. The facilitative fructose transporter, GLUT5, is expressed in insulin-sensitive tissues (skeletal muscle and adipocytes) of humans and rodents, where it mediates the uptake of substantial quantities of dietary fructose, but little is known about its regulation. We found that GLUT5 abundance and activity were compromised severely during obesity and insulin resistance in Zucker rat adipocytes. Adipocytes from young obese (fa/fa), highly insulin-responsive Zucker rats contained considerably more plasma membrane GLUT5 than those from their lean counterparts (1.8-fold per microgram membrane protein), and consequently exhibited higher fructose transport (fivefold) and metabolism (threefold) rates. Lactate production was the preferred route for fructose metabolism in these cells. As the rats aged and become more obese and insulin-resistant, adipocyte GLUT5 surface density (12-fold) and fructose transport (10-fold) and utilisation rates (threefold) fell markedly. The GLUT5 loss was more dramatic in adipocytes from obese animals, which developed a more marked insulin resistance than lean counterparts. The decline of GLUT5 levels in adipocytes from older, obese animals was not a generalised effect, and was not observed in kidney, nor was this expression pattern shared by the 1 subunit of the Na+/K+ ATPase. Our findings suggest that plasma membrane GLUT5 levels and thus fructose utilisation rates in adipocytes are dependent upon cellular insulin sensitivity, inferring a possible role for GLUT5 in the elevated circulating fructose observed during diabetes, and associated pathological complications. (Mol Cell Biochem 261: 23–33, 2004)  相似文献   

11.
The GLUT3 facilitative glucose transporter protein was found to be expressed in rat L6 muscle cells. It was detected at both the myoblast and myotube stage. GLUT3 protein content per mg of total membrane protein increased significantly during L6 cell differentiation. Subcellular fractionation demonstrated that the GLUT3 protein was predominantly localized in plasma membrane-enriched fractions of either myoblasts or myotubes. Short-term exposure of L6 myotubes to IGF-I or insulin caused a redistribution of GLUT3 protein from an intracellular membrane fraction to the plasma membrane, without affecting total membrane GLUT3 protein content. Long-term exposure of L6 myotubes to IGF-I produced an increase of GLUT3 protein in total membranes and all subcellular membrane fractions, especially the plasma membrane. We propose that the GLUT3 glucose transporter may play an important role in glucose metabolism in developing muscle.  相似文献   

12.
In L6 skeletal muscle cells expressing human insulin receptors (L6(hIR)), exposure to 25 mM glucose for 3 min induced a rapid 3-fold increase in GLUT1 and GLUT4 membrane translocation and glucose uptake. The high glucose concentration also activated the insulin receptor kinase toward the endogenous insulin receptor substrates (IRS)-1 and IRS-2. At variance, in L6 cells expressing kinase-deficient insulin receptors, the exposure to 25 mM glucose elicited no effect on glucose disposal. In the L6(hIR) cells, the acute effect of glucose on insulin receptor kinase was paralleled by a 2-fold decrease in both the membrane and the insulin receptor co-precipitated protein kinase C (PKC) activities and a 3-fold decrease in receptor Ser/Thr phosphorylation. Western blotting of the receptor precipitates with isoform-specific PKC antibodies revealed that the glucose-induced decrease in membrane- and receptor-associated PKC activities was accounted for by dissociation of PKCalpha but not of PKCbeta or -delta. This decrease in PKCalpha was paralleled by a similarly sized increase in cytosolic PKCalpha. In intact L6(hIR) cells, inhibition of PKCalpha expression by using a specific antisense oligonucleotide caused a 3-fold increase in IRS phosphorylation by the insulin receptor. This effect was independent of insulin and accompanied by a 2.5-fold increase in glucose disposal by the cells. Thus, in the L6 skeletal muscle cells, glucose acutely regulates its own utilization through the insulin signaling system, independent of insulin. Glucose autoregulation appears to involve PKCalpha dissociation from the insulin receptor and its cytosolic translocation.  相似文献   

13.
Neuregulins regulate the expression of acetylcholine receptor genes and induce development of the neuromuscular junction in muscle. In studying whether neuregulins regulate glucose uptake in muscle, we analyzed the effect of a recombinant neuregulin, (r)heregulin-beta1-(177-244) (HRG), on L6E9 muscle cells, which express the neuregulin receptors ErbB2 and ErbB3. L6E9 responded acutely to HRG by a time- and concentration-dependent stimulation of 2-deoxyglucose uptake. HRG-induced stimulation of glucose transport was additive to the effect of insulin. The acute stimulation of the glucose transport induced by HRG was a consequence of the translocation of GLUT4, GLUT1, and GLUT3 glucose carriers to the cell surface. The effect of HRG on glucose transport was dependent on phosphatidylinositol 3-kinase activity. HRG also stimulated glucose transport in the incubated soleus muscle and was additive to the effect of insulin. Chronic exposure of L6E9 cells to HRG potentiated myogenic differentiation, and under these conditions, glucose transport was also stimulated. The activation of glucose transport after chronic HRG exposure was due to enhanced cell content of GLUT1 and GLUT3 and to increased abundance of these carriers at the plasma membrane. However, under these conditions, GLUT4 expression was markedly down-regulated. Muscle denervation is associated with GLUT1 induction and GLUT4 repression. In this connection, muscle denervation caused a marked increase in the content of ErbB2 and ErbB3 receptors, which occurred in the absence of alterations in neuregulin mRNA levels. This fact suggests that neuregulins regulate glucose transporter expression in denervated muscle. We conclude that neuregulins regulate glucose uptake in L6E9 muscle cells by mechanisms involving the recruitment of glucose transporters to the cell surface and modulation of their expression. Neuregulins may also participate in the adaptations in glucose transport that take place in the muscle fiber after denervation.  相似文献   

14.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

15.
16.
Liu IM  Tzeng TF  Liou SS  Lan TW 《Life sciences》2007,81(21-22):1479-1488
The present study was conducted to explore the effects of myricetin on insulin resistance in rats fed for 6 weeks with a diet containing 60% fructose. Repeated intravenous (i.v.) injection of myricetin (1 mg/kg per injection, 3 times daily) for 14 days was found to significantly decrease the high glucose and triglyceride levels in plasma of fructose chow-fed rats. Also, the higher degree of insulin resistance in fructose chow-fed rats as measured by homeostasis model assessment of basal insulin resistance was significantly decreased by myricetin treatment. Myricetin increased the whole-body insulin sensitivity in fructose chow-fed rats, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. Myricetin was found to reverse the defect in expression of insulin receptor substrate-1 (IRS-1) and the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) in soleus muscle of fructose chow-fed rats under the basal state, despite the protein expression of insulin receptor (IR). Increased basal phosphorylation of IR and IRS-1 as well as Akt was observed in parallel. The reduced level of insulin action on phosphorylation of IR, IRS-1 and Akt in soleus muscle of fructose chow-fed rats was reversed by myricetin treatment. Furthermore, myricetin treatment improved the defective insulin action on the translocation of glucose transporter subtype 4 (GLUT 4) in insulin-resistant soleus muscle. These findings indicate that myricetin improves insulin sensitivity through the enhancement of insulin action on IRS-1-associated PI 3-kinase and GLUT 4 activity in soleus muscles of animals exhibiting insulin resistance.  相似文献   

17.
GLUT11 (SLC2A11) is a class II sugar transport facilitator which exhibits highest similarity with the fructose transporter GLUT5 (about 42%). Here we demonstrate that separate exons 1 (exon 1A, exon 1B, and exon 1C) of the SLC2A11 gene generate mRNAs of three GLUT11 variants (GLUT11-A, GLUT11-B, and GLUT11-C) that differ in the amino acid sequence of their N-termini. All three 5'-flanking regions of exon 1A, exon 1B and exon 1C exhibited promoter activity when expressed as luciferase fusion constructs in COS-7 cells. 5'-RACE-PCR, quantitative real-time PCR, and Northern blot analysis performed with specific probes for exon 1A, 1B and 1C demonstrated that GLUT11-A is expressed in heart, skeletal muscle, and kidney, GLUT11-B in kidney, adipose tissue, and placenta, and GLUT11-C in adipose tissue, heart, skeletal muscle, and pancreas. Surprisingly, mice and rats lack the SLC2A11 gene. When expressed in Xenopus oocytes, all three GLUT11 isoforms transport glucose and fructose but not galactose. There was no apparent difference in the subcellular distribution of the three isoforms expressed in COS-7 cells. Our data indicate that different promoters and splicing of the human SLC2A11 gene generate three GLUT11 isoforms which are expressed in a tissue specific manner but do not appear to differ in their functional characteristics.  相似文献   

18.
19.
An increase in circulating levels of specific NEFAs (non-esterified fatty acids) has been implicated in the pathogenesis of insulin resistance and impaired glucose disposal in skeletal muscle. In particular, elevation of SFAs (saturated fatty acids), such as palmitate, has been correlated with reduced insulin sensitivity, whereas an increase in certain MUFAs and PUFAs (mono- and poly-unsaturated fatty acids respectively) has been suggested to improve glycaemic control, although the underlying mechanisms remain unclear. In the present study, we compare the effects of palmitoleate (a MUFA) and palmitate (a SFA) on insulin action and glucose utilization in rat L6 skeletal muscle cells. Basal glucose uptake was enhanced approx. 2-fold following treatment of cells with palmitoleate. The MUFA-induced increase in glucose transport led to an associated rise in glucose oxidation and glycogen synthesis, which could not be attributed to activation of signalling proteins normally modulated by stimuli such as insulin, nutrients or cell stress. Moreover, although the MUFA-induced increase in glucose uptake was slow in onset, it was not dependent upon protein synthesis, but did, nevertheless, involve an increase in the plasma membrane abundance of GLUT1 and GLUT4. In contrast, palmitate caused a substantial reduction in insulin signalling and insulin-stimulated glucose transport, but was unable to antagonize the increase in transport elicited by palmitoleate. Our findings indicate that SFAs and MUFAs exert distinct effects upon insulin signalling and glucose uptake in L6 muscle cells and suggest that a diet enriched with MUFAs may facilitate uptake and utilization of glucose in normal and insulin-resistant skeletal muscle.  相似文献   

20.
《Free radical research》2013,47(9):1055-1068
Abstract

High fructose consumption has implicated in insulin resistance and metabolic syndrome. Fructose is a highly lipogenic sugar that has intense metabolic effects in liver. Recent evidences suggest that fructose exposure to other tissues has substantial and profound metabolic consequences predisposing toward chronic conditions such as type 2 diabetes. Since skeletal muscle is the major site for glucose utilization, in the present study we define the effects of fructose exposure on glucose utilization in skeletal muscle cells. Upon fructose exposure, the L6 skeletal muscle cells displayed diminished glucose uptake, glucose transporter type 4 (GLUT4) translocation, and impaired insulin signaling. The exposure to fructose elevated reactive oxygen species (ROS) production in L6 myotubes, accompanied by activation of the stress/inflammation markers c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), and degradation of inhibitor of NF-κB (IκBα). We found that fructose caused impairment of glucose utilization and insulin signaling through ROS-mediated activation of JNK and ERK1/2 pathways, which was prevented in the presence of antioxidants. In conclusion, our data demonstrate that exposure to fructose induces cell-autonomous oxidative response through ROS production leading to impaired insulin signaling and attenuated glucose utilization in skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号