首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A Saccharomyces cerevisiae gene for trehalose-6-phosphate synthase (TPS1) was sequenced. The gene appeared to code for a protein of 495 amino acid residues, giving the protein a molecular mass of 56 kDa. The TPS1 gene was able to restore both osmotolerance and trehalose accumulation during salt stress in an Escherichia coli strain mutated in the otsA gene encoding trehalose-6-phosphate synthase. Complementation studies with E. coli galU mutants showed that the TPS1-encoded trehalose-6-phosphate synthase is UDP-glucose-dependent. Sequence analysis and data base searches showed that TPS1 is allelic to GGS1, byp1, cif1 and fdp1 . A possible gene for trehalose-6-phosphate synthase in Methanobacterium thermoautotrophicum was identified.  相似文献   

2.
Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development.  相似文献   

3.
Despite the recent discovery that trehalose synthesis is widespread in higher plants very little is known about its physiological significance. Here we report on an Arabidopsis mutant (tps1), disrupted in a gene encoding the first enzyme of trehalose biosynthesis (trehalose-6-phosphate synthase). The tps1 mutant is a recessive embryo lethal. Embryo morphogenesis is normal but development is retarded and stalls early in the phase of cell expansion and storage reserve accumulation. TPS1 is transiently up-regulated at this same developmental stage and is required for the full expression of seed maturation marker genes (2S2 and OLEOSN2). Sucrose levels also increase rapidly in seeds during the onset of cell expansion. In Saccharomyces cerevisiae trehalose-6-phosphate (T-6-P) is required to regulate sugar influx into glycolysis via the inhibition of hexokinase and a deficiency in TPS1 prevents growth on sugars (Thevelein and Hohmann, 1995). The growth of Arabidopsis tps1-1 embryos can be partially rescued in vitro by reducing the sucrose level. However, T-6-P is not an inhibitor of AtHXK1 or AtHXK2. Nor does reducing hexokinase activity rescue tps1-1 embryo growth. Our data establish for the first time that an enzyme of trehalose metabolism is essential in plants and is implicated in the regulation of sugar metabolism/embryo development via a different mechanism to that reported in S. cerevisiae.  相似文献   

4.
5.
异色瓢虫海藻糖合成酶基因的克隆及低温诱导表达分析   总被引:1,自引:0,他引:1  
秦资  王甦  魏苹  徐彩娣  唐斌  张帆 《昆虫学报》2012,55(6):651-658
海藻糖是昆虫的血糖, 在昆虫体内主要通过海藻糖合成酶(trehalose-6-phosphate synthase, TPS)催化合成。本研究通过同源克隆和cDNA末端快速扩增(rapid-amplification of cDNA ends, RACE) 技术, 从异色瓢虫Harmonia axyridis中克隆得到了TPS基因的cDNA全长序列, 命名为HaTPS(GenBank登录号: FJ501960), 全长2 949 bp, 包含3′非翻译区为505 bp, 5′非翻译区为26 bp, 开放阅读框长2 418 bp, 共编码805个氨基酸。软件分析显示该基因编码蛋白的分子量为90.58 kD, 等电点为7.01, 包含两个糖基化位点, 无信号肽和跨膜结构。同源比对分析发现, 昆虫中TPS基因高度保守, 包含两个保守的结构域。同时, 采用实时荧光定量PCR技术对异色瓢虫HaTPS在不同发育阶段、 低温诱导条件下的表达量进行了研究。结果表明: HaTPS在预蛹期的表达量最高; 在短时低温诱导条件下, HaTPS的表达量随着温度的降低而显著升高, 在降温和升温处理条件下, HaTPS的表达量呈现先升高后下降的表达趋势。结果表明, TPS基因在昆虫抗逆中起到了重要的调节作用。昆虫经过低温诱导, 其TPS基因的调控能力得到提升。  相似文献   

6.

Background

Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP).

Methods

In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100 mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC).

Results

An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37 °C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl2, MgCl2 and ZnSO4, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest Vmax and lowest Km values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors.

General significance

Substrate specificity, Vmax and Km values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.  相似文献   

7.
8.
Axenically grown Arabidopsis thaliana plants were analysed for the occurrence of trehalose. Using gas chromatography-mass spectrometry (GC-MS) analysis, trehalose was unambiguously identified in extracts from Arabidopsis inflorescences. In a variety of organisms, the synthesis of trehalose is catalysed by trehalose-6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12). Based on EST (expressed sequence tag) sequences, three full-length Arabidopsis cDNAs whose predicted protein sequences show extensive homologies to known TPS and TPP proteins were amplified by RACE-PCR. The expression of the corresponding genes, AtTPSA, AtTPSB and AtTPSC, and of the previously described TPS gene, AtTPS1, was analysed by quantitative RT-PCR. All of the genes were expressed in the rosette leaves, stems and flowers of Arabidopsis plants and, to a lower extent, in the roots. To study the role of the Arabidopsis genes, the AtTPSA and AtTPSC cDNAs were expressed in Saccharomyces cerevisiae mutants deficient in trehalose synthesis. In contrast to AtTPS1, expression of AtTPSA and AtTPSC in the tps1 mutant lacking TPS activity did not complement trehalose formation after heat shock or growth on glucose. In addition, no TPP function could be identified for AtTPSA and AtTPSC in complementation studies with the S. cerevisiae tps2 mutant lacking TPP activity. The results indicate that while AtTPS1 is involved in the formation of trehalose in Arabidopsis, some of the Arabidopsis genes with homologies to known TPS/TPP genes encode proteins lacking catalytic activity in trehalose synthesis.  相似文献   

9.
The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Delta mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Delta mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39 degrees C and induced thermotolerance at 50 degrees C. The osmosensitive phenotype of the yeast tps1Delta mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.  相似文献   

10.
陈静  张道伟 《昆虫学报》2015,58(10):1046-1053
【目的】海藻糖合成酶(trehalose-6-phosphate synthase, TPS)是参与昆虫血糖-海藻糖合成的关键酶。本研究旨在克隆德国小蠊 Blattella germanica TPS基因,研究TPS基因在德国小蠊不同组织中的表达模式及在不同温度处理下的表达情况。【方法】通过RACE技术克隆德国小蠊TPS基因全长序列,利用荧光定量PCR的方法检测TPS基因在德国小蠊5龄幼虫不同组织中的表达模式及在高温(40℃和46℃处理30 min)及低温(0℃和10℃处理1 h)逆境下的表达量变化。【结果】从德国小蠊中克隆获得2个TPS基因,分别命名为 BgTPS1 (GenBank登录号:KR050213) 和 BgTPS2 (GenBank登录号:KR050214)。其中,BgTPS1基因cDNA序列全长2 987 bp,开放阅读框 (ORF) 2 502 bp,编码833个氨基酸;BgTPS2基因cDNA序列全长3 212 bp,开放阅读框2 469 bp,编码822个氨基酸。BgTPS1和BgTPS2基因都主要在5龄幼虫脂肪体中表达,且BgTPS2基因的表达量为BgTPS1基因表达量的3.9倍。在两种不同极端温度诱导下,BgTPS1和BgTPS2基因mRNA均上调表达。其中,BgTPS2 的表达量始终显著高于 BgTPS1。在0℃时,BgTPS1和BgTPS2的表达量最高。【结论】德国小蠊5龄幼虫中存在2个TPS基因。两个TPS基因均在脂肪体中高表达,且BgTPS2基因的表达量显著高于BgTPS1基因;低温和高温诱导下均能促进两个基因的表达量上升。该结果为进一步明确昆虫海藻糖的合成途径及其在昆虫对温度逆境的反应中的作用研究奠定了基础。  相似文献   

11.
Trehalose is an important disaccharide and a key regulation factor for the development of many organisms, including plants, bacteria, fungi and insects. In order to study the trehalose synthesis pathway, a cDNA for a trehalose-6-phosphate synthase from Spodoptera exigua (SeTPS) was cloned which contained an open reading frame of 2481 nucleotides encoding a protein of 826 amino acids with a predicted molecular weight of 92.65 kDa. The SeTPS genome has 12 exons and 11 introns. Northern blot and RT-PCR analyses showed that SeTPS mRNA was expressed in the fat body and in the ovary. Competitive RT-PCR revealed that SeTPS mRNA was expressed in the fat body at different developmental stages and was present at a high level in day 1 S. exigua pupae. The concentrations of trehalose and glucose in the hemolymph were determined by HPLC and showed that they varied at different developmental stages and were negatively correlated to each other. The survival rates of the insects injected with dsRNA corresponding to SeTPS gene reached 53.95%, 49.06%, 34.86% and 33.24% for 36, 48, 60 and 204 h post-injection respectively which were significantly lower than those of the insects in three control groups. These findings provide new data on the tissue distribution, expression patterns and potential function of the trehalose-6-phosphate synthase gene.  相似文献   

12.
13.
Trehalose-6-P inhibits hexokinases in Saccharomyces cerevisiae (M. A. Blázquez, R. Lagunas, C. Gancedo, and J. M. Gancedo, FEBS Lett. 329:51-54, 1993), and disruption of the TPS1 gene (formerly named CIF1 or FDP1) encoding trehalose-6-P synthase prevents growth in glucose. We have found that the hexokinase from Schizosaccharomyces pombe is not inhibited by trehalose-6-P even at a concentration of 3 mM. The highest internal concentration of trehalose-6-P that we measured in S. pombe was 0.75 mM after heat shock. We have isolated from S. pombe the tps1+ gene, which is homologous to the Saccharomyces cerevisiae TPS1 gene. The DNA sequence from tps1+ predicts a protein of 479 amino acids with 65% identity with the protein of S. cerevisiae. The tps1+ gene expressed from its own promoter could complement the lack of trehalose-6-P synthase in S. cerevisiae tps1 mutants. The TPS1 gene from S. cerevisiae could also restore trehalose synthesis in S. pombe tps1 mutants. A chromosomal disruption of the tps1+ gene in S. pombe did not have a noticeable effect on growth in glucose, in contrast with the disruption of TPS1 in S. cerevisiae. However, the disruption prevented germination of spores carrying it. The level of an RNA hybridizing with an internal probe of the tps1+ gene reached a maximum after 20 min of heat shock treatment. The results presented support the idea that trehalose-6-P plays a role in the control of glycolysis in S. cerevisiae but not in S. pombe and show that the trehalose pathway has different roles in the two yeast species.  相似文献   

14.
Trehalose-6-phosphate synthase is the key enzyme for biosynthesis of trehalose, the major soluble carbohydrate in resting cells of yeast. This enzyme was purified from a strain of Saccharomyces cerevisiae lacking vacuolar proteases. It was found to be a multimeric protein of 630 kDa. Monoclonal antibodies were raised against its smallest subunit (56 kDa) and used for screening a yeast cDNA library. This yielded an immunopositive cDNA clone of 1.7 kb, containing an open reading frame of 1485 base pairs. Its sequence, called TPS1 (for trehalose-6-phosphate synthase), was represented by a single gene in the yeast genome and was found to be almost identical with the recently sequenced CIF1, a gene important for carbon catabolite inactivation, believed to be allelic with FDP1. A mutant obtained by disruption of TPS1 had a very low activity of trehalose-6-phosphate synthase, indicating that TPS1 is an important component of the enzyme. The mutant also showed a growth defect when transferred from glycerol to glucose, a phenotype similar to that of the cif1 and fdp1 mutants deficient in carbon catabolite inactivation. Thus, the smallest subunit of the biosynthetic enzyme trehalose-6-phosphate synthase appears to have, in addition, a central regulatory role in the carbohydrate metabolism of yeast.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, TPS1-encoded trehalose-6-phosphate synthase (TPS) exerts an essential control on the influx of glucose into glycolysis, presumably by restricting hexokinase activity. Deletion of TPS1 results in severe hyperaccumulation of sugar phosphates and near absence of ethanol formation. To investigate whether trehalose 6-phosphate (Tre6P) is the sole mediator of hexokinase inhibition, we have reconstituted ethanolic fermentation from glucose in permeabilized spheroplasts of the wild-type, tps1Delta and tps2Delta (Tre6P phosphatase) strains. For the tps1Delta strain, ethanol production was significantly lower and was associated with hyperaccumulation of Glu6P and Fru6P. A tps2Delta strain shows reduced accumulation of Glu6P and Fru6P both in intact cells and in permeabilized spheroplasts. These results are not consistent with Tre6P being the sole mediator of hexokinase inhibition. Reconstitution of ethanolic fermentation in permeabilized spheroplasts with glycolytic intermediates indicates additional target site(s) for the Tps1 control. Addition of Tre6P partially shifts the ethanol production rate and the metabolite pattern in permeabilized tps1Delta spheroplasts to those of the wild-type strain, but only with glucose as substrate. This is observed at a very high ratio of glucose to Tre6P. Inhibition of hexokinase activity by Tre6P is less efficiently counteracted by glucose in permeabilized spheroplasts compared to cell extracts, and this effect is largely abolished by deletion of TPS2 but not TPS1. In permeabilized spheroplasts, hexokinase activity is significantly lower in a tps2Delta strain compared to a wild-type strain and this difference is strongly reduced by additional deletion of TPS1. These results indicate that Tps1-mediated protein-protein interactions are important for control of glucose influx into yeast glycolysis, that Tre6P inhibition of hexokinase might not be competitive with respect to glucose in vivo and that also Tps2 appears to play a role in the control of hexokinase activity.  相似文献   

16.
17.
A homologous sequence was amplified from resurrection plant Selaginella pulvinta by RACE technique, proved to be the full-length cDNA of trehalose-6-phosphate synthase gene by homologous alignment and yeast complementation assay, and nominated as SpTPS1 gene. The open reading frame of this gene was truncated 225 bp at the 5′-end, resulting the N-terminal truncation modification of 75 amino acids for its encoding protein. The TPS1 deletion mutant strain YSH290 of the brewer's yeast transformed by the truncated gene SpTPS1Δ and its original full-length version restored growth on the medium with glucose as a sole carbon source and displayed growth curves with no significant difference, indicating their encoding proteins functioning as TPS enzyme. The TPS activity of the mutant strain transformed by the truncated gene SpTPS1Δ was about six fold higher than that transformed by its original version, reasoning that the extra N-terminal extension of the full-length amino acid sequence acts as an inhibitory domain to trehalose synthesis. However, the trehalose accumulation of the mutant strain transformed by the truncated gene SpTPS1Δ was only 8% higher than that transformed by its original version. This result is explained by the feedback balance of trehalose content coordinated by the comparative activities between trehalose synthase and trehalase. The truncated gene SpTPS1Δ is suggested to be used in transgenic operation, together with the inhibition of trehalase activity by the application of validamycin A or genetic deficiency of the endogenous trehalase gene, for the enhancement of trehalose accumulation and improvement of abiotic tolerance in transgenic plants.  相似文献   

18.
In yeast, trehalose-6-phosphate synthase is a key enzyme for trehalose biosynthesis, encoded by the structural gene TPS1. Trehalose affects sugar metabolism as well as osmoprotection against several environmental stresses, such as heat and desiccation. The TPS1 gene of Saccharomyces cerevisiae was engineered under the control of the CaMV 35S promoter for constitutive expression in transgenic potato plants by Ti-plasmid of Agrobacterium-mediated transformation. The resulting TPS1 transgenic potato plants exhibited various morphological phenotypes in culture tubes, ranging from normal to severely retarded growth, including dwarfish growth, yellowish lancet-shaped leaves, and aberrant root development. However, the plants recovered from these negative growth effects when grown in a soil mixture. The TPS1 transgenic potato plants showed significantly increased drought resistance. These results suggest that the production of trehalose not only affects plant development but also improves drought tolerance.  相似文献   

19.
从耐热性极强的酿酒酵母菌株AS2.1416中分离纯化出总RNA和mRNA,以AMV逆录酶合成cDNA,采用保守引物,从该cDNA中扩增克隆出tps1基因,对该基因的全序列分析表明,该基因含有1507个核苷酸,与国外报道相关基因的同源性达99.65。利用BamHⅠSacⅠ切点将tps1基因插入植物表达载体pBin438多克隆位点上,得到tps1基因植物表达载体重组质粒。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号