首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim S  Wang Z  Dalkilic M 《Proteins》2007,66(3):671-681
The motif prediction problem is to predict short, conserved subsequences that are part of a family of sequences, and it is a very important biological problem. Gibbs is one of the first successful motif algorithms and it runs very fast compared with other algorithms, and its search behavior is based on the well-studied Gibbs random sampling. However, motif prediction is a very difficult problem and Gibbs may not predict true motifs in some cases. Thus, the authors explored a possibility of improving the prediction accuracy of Gibbs while retaining its fast runtime performance. In this paper, the authors considered Gibbs only for proteins, not for DNA binding sites. The authors have developed iGibbs, an integrated motif search framework for proteins that employs two previous techniques of their own: one for guiding motif search by clustering sequences and another by pattern refinement. These two techniques are combined to a new double clustering approach to guiding motif search. The unique feature of their framework is that users do not have to specify the number of motifs to be predicted when motifs occur in different subsets of the input sequences since it automatically clusters input sequences into clusters and predict motifs from the clusters. Tests on the PROSITE database show that their framework improved the prediction accuracy of Gibbs significantly. Compared with more exhaustive search methods like MEME, iGibbs predicted motifs more accurately and runs one order of magnitude faster.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.  相似文献   

9.
This paper takes a new view of motif discovery, addressing a common problem in existing motif finders. A motif is treated as a feature of the input promoter regions that leads to a good classifier between these promoters and a set of background promoters. This perspective allows us to adapt existing methods of feature selection, a well-studied topic in machine learning, to motif discovery. We develop a general algorithmic framework that can be specialized to work with a wide variety of motif models, including consensus models with degenerate symbols or mismatches, and composite motifs. A key feature of our algorithm is that it measures overrepresentation while maintaining information about the distribution of motif instances in individual promoters. The assessment of a motif's discriminative power is normalized against chance behaviour by a probabilistic analysis. We apply our framework to two popular motif models and are able to detect several known binding sites in sets of co-regulated genes in yeast.  相似文献   

10.
11.
12.
The recent interest sparked due to the discovery of a variety of functions for non-coding RNA molecules has highlighted the need for suitable tools for the analysis and the comparison of RNA sequences. Many trans-acting non-coding RNA genes and cis-acting RNA regulatory elements present motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We present an algorithm that takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules. Only a single parameter is needed as input, which denotes the number of distinct hairpins the motif has to contain. No further constraints on the size, number and position of the single elements comprising the motif are required. The algorithm can be split into two parts: first, it extracts from each input sequence a set of candidate regions whose predicted optimal secondary structure contains the number of hairpins given as input. Then, the regions selected are compared with each other to find the groups of most similar ones, formed by a region taken from each sequence. To avoid exhaustive enumeration of the search space and to reduce the execution time, a greedy heuristic is introduced for this task. We present different experiments, which show that the algorithm is capable of characterizing and discovering known regulatory motifs in mRNA like the iron responsive element (IRE) and selenocysteine insertion sequence (SECIS) stem–loop structures. We also show how it can be applied to corrupted datasets in which a motif does not appear in all the input sequences, as well as to the discovery of more complex motifs in the non-coding RNA.  相似文献   

13.
14.
Effective probabilistic modeling approaches have been developed to find motifs of biological function in DNA sequences. However, the problem of automated model choice remains largely open and becomes more essential as the number of sequences to be analyzed is constantly increasing. Here we propose a reversible jump Markov chain Monte Carlo algorithm for estimating both parameters and model dimension of a Bayesian hidden semi-Markov model dedicated to bacterial promoter motif discovery. Bacterial promoters are complex motifs composed of two boxes separated by a spacer of variable but constrained length and occurring close to the protein translation start site. The algorithm allows simultaneous estimations of the width of the boxes, of the support size of the spacer length distribution, and of the order of the Markovian model used for the "background" nucleotide composition. The application of this method on three sequence sets points out the good behavior of the algorithm and the biological relevance of the estimated promoter motifs.  相似文献   

15.
16.
Motif discovery methods play pivotal roles in deciphering the genetic regulatory codes (i.e., motifs) in genomes as well as in locating conserved domains in protein sequences. The Expectation Maximization (EM) algorithm is one of the most popular methods used in de novo motif discovery. Based on the position weight matrix (PWM) updating technique, this paper presents a Monte Carlo version of the EM motif-finding algorithm that carries out stochastic sampling in local alignment space to overcome the conventional EM's main drawback of being trapped in a local optimum. The newly implemented algorithm is named as Monte Carlo EM Motif Discovery Algorithm (MCEMDA). MCEMDA starts from an initial model, and then it iteratively performs Monte Carlo simulation and parameter update until convergence. A log-likelihood profiling technique together with the top-k strategy is introduced to cope with the phase shifts and multiple modal issues in motif discovery problem. A novel grouping motif alignment (GMA) algorithm is designed to select motifs by clustering a population of candidate local alignments and successfully applied to subtle motif discovery. MCEMDA compares favorably to other popular PWM-based and word enumerative motif algorithms tested using simulated (l, d)-motif cases, documented prokaryotic, and eukaryotic DNA motif sequences. Finally, MCEMDA is applied to detect large blocks of conserved domains using protein benchmarks and exhibits its excellent capacity while compared with other multiple sequence alignment methods.  相似文献   

17.
18.
19.
20.
We have generated a WWW interface for automated comprehensive analyses of promoter regulatory motifs and the effect they exert on mRNA expression profiles. The server provides a wide spectrum of analysis tools that allow de novo discovery of regulatory motifs, along with refinement and in-depth investigation of fully or partially characterized motifs. The presented discovery and analysis tools are fundamentally different from existing tools in their basic rational, statistical background and specificity and sensitivity towards true regulatory elements. We thus anticipate that the service will be of great importance to the experimental and computational biology communities alike. The motif discovery and diagnosis workbench is available at http://longitude.weizmann.ac.il/rMotif/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号