共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Training-induced skeletal muscle adaptations are independent of systemic adaptations 总被引:1,自引:0,他引:1
J R Minotti E C Johnson T L Hudson G Zuroske E Fukushima G Murata L E Wise T W Chick M V Icenogle 《Journal of applied physiology》1990,68(1):289-294
To isolate the peripheral adaptations to training, five normal subjects exercised the nondominant (ND) wrist flexors for 41 +/- 11 days, maintaining an exercise intensity below the threshold required for cardiovascular adaptations. Before and after training, intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were measured by 31P magnetic resonance spectroscopy. Also maximal O2 consumption (VO2 max), muscle mass, and forearm blood flow were determined by graded systemic exercise, magnetic resonance imaging, and venous occlusion plethysmography, respectively. Blood flow, Pi/PCr, and pH were measured in both forearms at rest and during submaximal wrist flexion at 5, 23, and 46 J/min. Training did not affect VO2 max, exercise blood flow, or muscle mass. Resting pH, Pi/PCr, and blood flow were also unchanged. After training, the ND forearm demonstrated significantly lower Pi/PCr at 23 and 46 J/min. Endurance, measured as the number of contractions to exhaustion, also was increased significantly (63%) after training in the ND forearm. We conclude that 1) forearm training results in a lower Pi/PCr at identical submaximal work loads; 2) this improvement is independent of changes in VO2 max, muscle mass, or limb blood flow; and 3) these differences are associated with improved endurance and may reflect improved oxidative capacity of skeletal muscle. 相似文献
3.
Operation Everest II: adaptations in human skeletal muscle 总被引:3,自引:0,他引:3
Green H. J.; Sutton J. R.; Cymerman A.; Young P. M.; Houston C. S. 《Journal of applied physiology》1989,66(5):2454-2461
Adaptations in skeletal muscle in response to progressive hypobaria were investigated in eight male subjects [maximal O2 uptake = 51.2 +/- 3.0 (SE) ml.kg-1.min-1] over 40 days of progressive decompression to the stimulated altitude of the summit of Mt. Everest. Samples of the vastus lateralis muscle extracted before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) indicated that maximal activities of enzymes representative of the citric acid cycle, beta-oxidation, glycogenolysis, glycolysis, glucose phosphorylation, and high-energy phosphate transfer were unchanged (P greater than 0.05) at 380 and 282 Torr over initial SL-1 values. After exposure to 282 Torr, however, representing an additional period of approximately 7 days, reductions (P less than 0.05) were noted in succinic dehydrogenase (21%), citrate synthetase (37%), and hexokinase (53%) between SL-2 and 380 Torr. No changes were found in the other enzymes. Capillarization as measured by the number of capillaries per cross-sectional area (CC/FA) was increased (P less than 0.05) in both type I (0.94 +/- 0.8 vs. 1.16 +/- 0.05) and type II (0.84 +/- 0.07 vs. 1.05 +/- 0.08) fibers between SL-1 and SL-2. This increase was mediated by a reduction in fiber area. No changes were found in fiber-type distribution (type I vs. type II). These findings do not support the hypothesis, at least in humans, that, at the level of the muscle cell, extreme hypobaric hypoxia elicits adaptations directed toward maximizing oxidative function. 相似文献
4.
Alway S. E.; MacDougall J. D.; Sale D. G.; Sutton J. R.; McComas A. J. 《Journal of applied physiology》1988,64(3):1114-1120
Twitch contractile and ultrastructural characteristics of the human triceps surae were determined in six male strength-trained athletes, six endurance-trained athletes, six active controls, and seven sedentary controls of similar height and age. Twitch contraction time in the triceps surae complex was 20% longer in strength-trained and sedentary groups than in endurance-trained or active control groups. In the 15 subjects peak twitch torque and one-half relation time in the triceps surae were 22.6 +/- 7.9 N.m and 91.1 +/- 18.3 ms, respectively. Mean fiber area in the gastrocnemius was approximately 1.6-, 1.7-, and 2.5-fold greater in the active control, endurance-trained, and strength-trained groups, respectively, relative to the sedentary group. Despite these large differences in fiber areas, the fiber fractional volume of the sarcoplasmic reticulum-transverse tubule network averaged 3.38 +/- 0.86% and 5.50 +/- 0.94% in type I and type II fibers, respectively, in all subjects. The fractional fiber volume of cytoplasm and lipid were similar for all four groups. However, mitochondrial volume was approximately 30% lower in both fiber types of the strength-trained group relative to the other groups. This implies that with exercise-induced hypertrophy, the sarcoplasmic reticulum, cytoplasm, and lipid components increase proportionately with contractile protein, whereas the mitochondrial fraction does not. The proportion of type I fibers in the soleus, medial gastrocnemius, and lateral gastrocnemius was 75.2 +/- 8.3, 58.5 +/- 6.1, and 52.4 +/- 4.2%, respectively, and was similar in all subject groups. The results demonstrate that twitch duration is prolonged in strength-trained athletes relative to endurance athletes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
6.
7.
Invited review: Exercise training-induced changes in insulin signaling in skeletal muscle. 总被引:10,自引:0,他引:10
Juleen R Zierath 《Journal of applied physiology》2002,93(2):773-781
8.
9.
Metabolic adaptations in skeletal muscle of streptozotocin-diabetic rats following exercise training
C D Ianuzzo M Lesser F Battista 《Biochemical and biophysical research communications》1974,58(1):107-111
Compensatory metabolic adaptations induced in streptozotocin-diabetic rat skeletal muscle by submaximal endurance training have been investigated. The gastrocnemius muscles of sedentary streptozotocin-diabetic rats were found to have a lower than normal myoglobin content, succinate dehydrogenase activity, and capacity to oxidize pyruvate and palmitate-1-[14C]. The values of these parameters were significantly increased in the diabetic skeletal muscle by the training program, obtaining levels similar to those of normal sedentary animals. 相似文献
10.
Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise 总被引:6,自引:0,他引:6
Jackson MJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2005,360(1464):2285-2291
Skeletal muscle has been shown to generate a complex set of reactive oxygen and nitrogen species (ROS) both at rest and during contractile activity. The primary ROS generated are superoxide and nitric oxide and the pattern and magnitude of their generation is influenced by the nature of the contractile activity. It is increasingly clear that the ROS generated by skeletal muscle play an important role in influencing redox-regulated processes that control, at least some of, the adaptive responses to contractile activity. These processes are also recognized to be modified during ageing and in some disease states, providing the potential that interventions affecting ROS activity may influence muscle function or viability in these situations. 相似文献
11.
12.
13.
1. Mitochondria were isolated according to their cellular location within the fibers of pooled gastrocnemius and plantaris muscle of the rat. This procedure yields two populations of mitochondria which display different biochemical properties. 2. The adaptive response of these mitochondria populations to the chronic exposure to different elevated energy demands (different modes of exercise training) was investigated. 3. The observed changes in mitochondrial protein content and cytochrome oxidase activity in the respective mitochondria population suggests that each population is capable of independent adaptations. 4. The adaptive response of each mitochondria population, furthermore, was predictable with respect to the metabolic energy demand of the exercise training workload. 相似文献
14.
Phillips SM Parise G Roy BD Tipton KD Wolfe RR Tamopolsky MA 《Canadian journal of physiology and pharmacology》2002,80(11):1045-1053
Resistance training changes the balance of muscle protein turnover, leading to gains in muscle mass. A longitudinal design was employed to assess the effect that resistance training had on muscle protein turnover in the fed state. A secondary goal was investigation of the potential interactive effects of creatine (Cr) monohydrate supplementation on resistance-training-induced adaptations. Young (N = 19, 23.7 +/- 3.2 year), untrained (UT), healthy male subjects completed an 8-week resistance-training program (6 d/week). Supplementation with Cr had no impact on any of the variables studied; hence, all subsequent data were pooled. In the UT and trained (T) state, subjects performed an acute bout of resistance exercise with a single leg (exercised, EX), while their contralateral leg acted as a nonexercised (NE) control. Following exercise, subjects were fed while receiving a primed constant infusion of [d5]- and [15N]-phenylalanine to determine the fractional synthetic and breakdown rates (FSR and FBR), respectively, of skeletal muscle proteins. Acute exercise increased FSR (UT-NE, 0.065 +/- 0.025 %/h; UT-EX, 0.088 +/- 0.032 %/h; P < 0.01) and FBR (UT-NE, 0.047 +/- 0.023 %/h; UT-EX, 0.058 +/- 0.026 %/h; P < 0.05). Net balance (BAL = FSR - FBR) was positive in both legs (P < 0.05) but was significantly greater (+65%) in the EX versus the NE leg (P < 0.05). Muscle protein FSR and FBR were greater at rest following T (FSR for T-NE vs. UT-NE, +46%, P < 0.01; FBR for T-NE vs. UT-NE, +81%, P < 0.05). Resistance training attenuated the acute exercise-induced rise in FSR (T-NE vs. T-EX, +20%, P = 0.65). The present results demonstrate that resistance training resulted in an elevated resting muscle protein turnover but an attenuation of the acute response of muscle protein turnover to a single bout of resistance exercise. 相似文献
15.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle. 相似文献
16.
This study tested the hypothesis that both structural and functional adaptations of arterioles occur within the skeletal muscle of rats aerobically trained for 8-10 wk with treadmill exercise. The training regimen used has been shown to elicit a 37% increase in plantaris citrate synthase activity but did not result in an elevation in citrate synthase activity in the spinotrapezius or gracilis muscles of rats used in this study. In the in vivo resting spinotrapezius muscle, arteriole diameters were similar in sedentary (SED) and trained (TR) rats. However, large- (1A) and intermediate- (2A) sized arterioles dilated proportionately more in TR than in SED rats during 1- to 8-Hz muscle contractions, even though the passive mechanical properties (circumference-passive wall tension relationships) were similar between groups. Vascular casts demonstrated a trend for an increase in the number of small (3A) arterioles and an approximately 20% increase in the passive diameter of 1A and 2A arterioles in the spinotrapezius muscle of TR rats. In contrast, in the gracilis muscle, arteriole diameters and density were identical in SED and TR rats, but the capillary-to-muscle fiber ratio was approximately 15% higher in TR rats. The results suggest that aerobic exercise training can greatly increase functional vasodilation and induce a slight increase in vascular density in skeletal muscle tissues, even if the oxidative capacity of these tissues is not increased by the training regimen. 相似文献
17.
Creatine kinase-MB isoenzyme adaptations in stressed human skeletal muscle of marathon runners 总被引:2,自引:0,他引:2
Apple F. S.; Rogers M. A.; Casal D. C.; Sherman W. M.; Ivy J. L. 《Journal of applied physiology》1985,59(1):149-153
The creatine kinase (CK) isoenzyme composition was determined in serial gastrocnemius muscle biopsies obtained from 12 male marathon runners. The mean muscle CK-MB composition significantly increased after chronic exercise (training) from 5.3% (pretraining) to 7.7% (premarathon) as well as after acute exercise (postmarathon) to 10.5% of the total CK activity (P less than 0.05). However, no significant differences in total CK activities were detected. Additionally, mitochondrial CK and CK-BB isoenzymes were present in muscle homogenates. A significant correlation was observed in the increase in mean serum total CK (3,322 U/l) and CK-MB (174 U/l) activities 24 h after the race (r = 0.98, P less than 0.05). These results show that gastrocnemius muscle adapts to long-distance training and racing with increased CK-MB activities and imply that skeletal muscle is the major source of elevated serum CK-MB activities in marathon runners. 相似文献
18.
19.
20.
Effects of beta-adrenergic blockade on training-induced structural adaptations in rat left ventricle 总被引:1,自引:0,他引:1
D P Thomas K M McCormick R R Jenkins 《European journal of applied physiology and occupational physiology》1988,57(6):671-676
The study was designed to evaluate the effects of eight weeks of exercise training or training-beta-adrenergic blockade combination on gross and microscopic alterations of rat cardiac muscle and microvascular bed. Rats were randomly assigned to either sedentary control (C), trained (T), metoprolol-trained (MT), or propranolol-trained (PT) groups. The training protocol involved treadmill running for 8 weeks at 0.5 ms-1, 20% grade. Earlier experiments by us showed this training protocol to be effective in producing significant changes in selected skeletal muscle enzyme activities in all trained groups. In the current study an absolute reduction in left ventricular (LV) weight was observed in the PT compared to the C group (0.91 +/- 0.02 vs. 1.04 +/- 0.04 g, P less than 0.05). LV weight in the T and MT groups was no different from C so that LV to BW ratio (mg.g-1) was significantly increased (P less than 0.05) due to a similar reduction in body weight (BW) in all three training groups. Morphometric analysis of LV myocardium revealed no significant differences in myocyte mean cross-sectional area (micron 2) in any of the groups (289 +/- 16-C, 332 +/- 20-T, 281 +/- 44-MT, and 273 +/- 12-PT). Capillary density independently calculated by light and electron microscopy was unchanged by training or training-beta-blockade combination. It was concluded that training of sufficient intensity and duration to produce skeletal muscle enzyme adaptations does not necessarily produce myocyte hypertrophy or alter LV capillarity. Additionally functioning beta-adrenergic receptors appear to play a role in both the central and peripheral adaptations to endurance exercise training. 相似文献