首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants. The molecular mass of the F. pinicola CBH was determined to be 64 kDa by SDS-PAGE and by size-exclusion chromatography, indicating that the enzyme is a monomer. The F. pinicola CBH showed a t1/2 value of 42 h at 70 degrees C and catalytic efficiency of 15.8 mM-1 S-1 (kcat/ Km) for p-nitrophenyl-beta-D-cellobioside, one of the highest levels seen for CBH-producing microorganisms. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, the F. pinicola CBH is distinguished from other CBHs by its high catalytic efficiency and thermostability.  相似文献   

2.
We isolated a thermophilic bacterium that produces both xylanase and beta-xylosidase. Based on taxonomical research, this bacterium was identified as Bacillus stearothermophilus. Each extracellular enzyme was separated by hydrophobic chromatography by using a Toyopearl HW-65 column, followed by gel filtration with a Sephacryl S-200 column. Each enzyme in the culture was further purified to homogeneity (62-fold for xylanase and 72-fold for beta-xylosidase) by using a fast protein liquid chromatography system with a Mono Q HR 5/5 column. The optimum temperatures were 60 degrees C for xylanase and 70 degrees C for beta-xylosidase. The isoelectric points and molecular masses were 5.1 and 39.5 kDa for xylanase and 4.2 and 150 kDa for beta-xylosidase, respectively. Heat treatment at 60 degrees C for 1 h did not cause inhibition of the activities of these enzymes. The action of the two enzymes on xylan gave only xylose.  相似文献   

3.
Xyn30D from the xylanolytic strain Paenibacillus barcinonensis has been identified and characterized. The enzyme shows a modular structure comprising a catalytic module family 30 (GH30) and a carbohydrate-binding module family 35 (CBM35). Like GH30 xylanases, recombinant Xyn30D efficiently hydrolyzed glucuronoxylans and methyl-glucuronic acid branched xylooligosaccharides but showed no catalytic activity on arabinose-substituted xylans. Kinetic parameters of Xyn30D were determined on beechwood xylan, showing a K(m) of 14.72 mg/ml and a k(cat) value of 1,510 min(-1). The multidomain structure of Xyn30D clearly distinguishes it from the GH30 xylanases characterized to date, which are single-domain enzymes. The modules of the enzyme were individually expressed in a recombinant host and characterized. The isolated GH30 catalytic module showed specific activity, mode of action on xylan, and kinetic parameters that were similar to those of the full-length enzyme. Computer modeling of the three-dimensional structure of Xyn30D showed that the catalytic module is comprised of a common (β/α)(8) barrel linked to a side-associated β-structure. Several derivatives of the catalytic module with decreasing deletions of this associated structure were constructed. None of them showed catalytic activity, indicating the importance of the side β-structure in the catalysis of Xyn30D. Binding properties of the isolated carbohydrate-binding module were analyzed by affinity gel electrophoresis, which showed that the CBM35 of the enzyme binds to soluble glucuronoxylans and arabinoxylans. Analysis by isothermal titration calorimetry showed that CBM35 binds to glucuronic acid and requires calcium ions for binding. Occurrence of a CBM35 in a glucuronoxylan-specific xylanase is a differential trait of the enzyme characterized.  相似文献   

4.
A putative recombinant β-galactosidase from Deinococcus geothermalis was purified as a single 79 kDa band of 42 U activity/mg using His-Trap affinity chromatography. The molecular mass of the native enzyme was a 158 kDa dimer. The catalytic residues E151 and E325 of β-galactosidase from D. geothermalis were conserved in all aligned GH family 42 β-galactosidases, indicating that this enzyme is also a GH family 42 β-galactosidase. Maximal activity of the enzyme was at pH 6.5 and 60°C. It has a unique hydrolytic activity for p-nitrophenyl(pNP)-β-D-galactopyranoside (k (cat)/K (m) = 69 s(-1) mM(-1)), pNP-β-D-fucopyranoside (13), oNP-β-D-galactopyranoside (9.5), oNP-β-D-fucopyranoside (2.6), lactose (0.97), and pNP-α-L-arabinopyranoside (0.78), whereas no activity, or less than 2% of the pNP-β-D-galactopyranoside activity, for other pNP- and oNP-glycosides.  相似文献   

5.
The filamentous fungus Penicillium funiculosum produces a mixture of modular and non-modular xylanases belonging to different glycoside hydrolase (GH) families. In the present study, we heterologously expressed the cDNA encoding GH11 xylanase B (XYNB) and studied the enzymatic properties of the recombinant enzyme. Expression in Escherichia coli led to the partial purification of a glutathione fusion protein from the soluble fraction whereas the recombinant protein produced in Pichia pastoris was successfully purified using a one-step chromatography. Despite O-glycosylation heterogeneity, the purified enzyme efficiently degraded low viscosity xylan [K(m)=40+/-3 g l(-1), V(max)=16.1+/-0.8 micromol xylose min(-1) and k(cat)=5405+/-150 s(-1) at pH 4.2 and 45 degrees C] and medium viscosity xylan [K(m)=34.5+/-3.2 g l(-1), V(max)=14.9+/-1.0 micromol xylose min(-1)k(cat)=4966+/-333 s(-1) at pH 4.2 and 45 degrees C]. XYNB was further tested for its ability to interact with wheat xylanase inhibitors. The xylanase activity of XYNB produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 89.7+/-8.5 and 2.9+/-0.3 nM, respectively, whereas no inhibition was detected with TAXI-II. Physical interaction of both TAXI-I and XIP-I with XYNB was observed using titration curves across a pH range 3-9.  相似文献   

6.
Two beta-endoxylanases produced by Neocallimastix frontalis have been purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. Xylanase I is a nonglycosylated protein with an apparent molecular mass of 45 kDa. Xylanase II is a glycoprotein with an apparent molecular mass of 70 kDa. The pH optima of these enzymes were 5.5 and 6, respectively, and the temperature optimum was 55 degrees C for each enzyme. The endo mode of action of the enzymes was revealed by thin-layer chromatography of xylan hydrolysates. Antibodies raised against each purified protein exhibited no cross-reaction, confirming the biochemical specificities of the enzymes. Both enzymes exhibited carboxymethyl cellulase activity, and xylanase I was absorbed on crystalline cellulose, indicating that these enzymes might belong to the F family of beta-1,4-glycanases.  相似文献   

7.
Extracellular xylanase (EC 3.2.1.8) from Streptomyces sp. K37 was purified 33.53 by ultrafiltration and cation exchange chromatography followed by gel filtration chromatography. The optimum pH and temperature for purified xylanase were found to be pH 6.0 and 60 degrees C. The Km and V(max) values of the purified xylanase were 15.4 mg ml(-1) and 0.67 micromole reducing sugar min(-1) ml(-1). High performance liquid chromatography (HPLC) gel filtration of the purified xylanase eluted xylanase activity as a peak corresponding to the molecular weight of about 24.3 kDa while the molecular weight determined by SDS-PAGE was found to be 26.4 kDa. The purified xylanase of Streptomyces sp. K37 was found to be endoxylanase and non arabinose liberating enzyme and was highly glycosylated (73.97%).  相似文献   

8.
To elucidate the interaction between substrate inhibition and substrate transglycosylation of retaining glycoside hydrolases (GHs), a steady-state kinetic study was performed for the GH family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium, using laminarioligosaccharides as substrates. When laminaribiose was incubated with the enzyme, a transglycosylation product was detected by thin-layer chromatography. The product was purified by size-exclusion chromatography, and was identified as a 6-O-glucosyl-laminaribiose (beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-D-Glc) by 1H NMR spectroscopy and electrospray ionization mass spectrometry analysis. In steady-state kinetic studies, an apparent decrease of laminaribiose hydrolysis was observed at high concentrations of the substrate, and the plots of glucose production versus substrate concentration were thus fitted to a modified Michaelis-Menten equation including hydrolytic and transglycosylation parameters (K(m), K(m2), k(cat), k(cat2)). The rate of 6-O-glucosyl-laminaribiose production estimated by high-performance anion-exchange chromatography coincided with the theoretical rate calculated using these parameters, clearly indicating that substrate inhibition of this enzyme is fully explained by substrate transglycosylation. Moreover, when K(m), k(cat), and affinity for glucosyl-enzyme intermediates (K(m2)) were estimated for laminarioligosaccharides (DP=3-5), the K(m) value of laminaribiose was approximately 5-9 times higher than those of the other oligosaccharides (DP=3-5), whereas the K(m2) values were independent of the DP of the substrates. The kinetics of transglycosylation by the enzyme could be well interpreted in terms of the subsite affinities estimated from the hydrolytic parameters (K(m) and k(cat)), and a possible mechanism of transglycosylation is proposed.  相似文献   

9.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50 degrees C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and beta-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85 degrees C for 20 min. Divalent metal ions Mg, Co, and Mn were required for maximum activity of the enzyme. The K(m) values for D-xylose and D-glucose at 80 degrees C and pH 7.5 were 6.66 and 142 mM, respectively, while K(cat) values were 2.3 x 10 s and 0.5 x 10 s, respectively.  相似文献   

10.
An extracellular feruloyl esterase (FAE-II) from the culture filtrates of Fusarium oxysporum F3 was purified to homogeneity by SP-Sepharose, t-butyl-HIC and Sephacryl S-200 column chromatography. The protein corresponded to molecular mass and pI values of 27 kDa and 9.9, respectively. The enzyme was optimally active at pH 7 and 45 degrees C. The purified esterase was fully stable at pH 7.0-9.0 and temperature up to 45 degrees C after 1 h incubation. Determination of k(cat)/K(m) revealed that the enzyme hydrolysed methyl sinapinate 6, 21 and 40 times more efficiently than methyl ferulate, methyl coumarate and methyl caffeate, respectively. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 but inactive to the C-2 positions of arabinofuranose such as 4-nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside. In the presence of Sporotrichum thermophile xylanase, there was a significant release of ferulic acid from destarched wheat bran by FAE-II, indicating a synergistic interaction between FAE-II and S. thermophile xylanase. FAE-II by itself could release only little ferulic acid from destarched wheat bran. The potential of FAE-II for the synthesis of various phenolic acid esters was tested using as a reaction system a surfactantless microemulsion formed in ternary mixture consisting of n-hexane, 1-propanol and water.  相似文献   

11.
The first committed step in the biosynthesis of menaquinone (vitamin K2) is the conversion of chorismate to isochorismate, which is mediated by an isochorismate synthase encoded by the menF gene. This isochorismate synthase (MenF) is distinct from the entC-encoded isochorismate synthase (EntC) involved in enterobactin biosynthesis. MenF has been overexpressed under the influence of the T7 promoter and purified to homogeneity. The purified protein was found to have a molecular mass of 98 kDa as determined by gel filtration column chromatography on Sephacryl S-200. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a molecular mass of 48 kDa. Thus, the enzyme is a homodimer. The purified enzyme showed a pH optimum of 7.5 to 8.0 and a temperature optimum of 37 degrees C. The enzyme carries out the irreversible conversion of chorismate to isochorismate in the presence of Mg2+. The enzyme was found to have a Km of 195 +/- 23 microM and a k(cat) of 80 min(-1). In the presence of 30 mM beta-mercaptoethanol (BME), the k(cat) increased to 176 min(-1). The reducing agents BME and dithiothreitol stimulated the enzymatic activity more than twofold. Treatment of the enzyme with the cysteine-specific modifying reagent N-ethylmaleimide (NEM) resulted in the complete loss of activity. Preincubation of the enzyme with the substrate, chorismate, before NEM treatment resulted in complete protection of the enzyme from inactivation.  相似文献   

12.
An acid phosphomonoesterase was purified 87-fold with a 4% recovery from disintegrated cells of Candida albicans by four stages of column chromatography. The purified enzyme was homogeneous by ultracentrifugal, electrophoretic, and immunological analyses. The fully corrected sedimentation coefficient, s(20,w), was calculated to be 5.51s. Molecular weight estimated from ultracentrifugal data was 124.3 x 10(3), from gel chromatography was 115 x 10(3), and from acrylamide gel electrophoretic data was 131 x 10(3). Buoyant density in sucrose was 1.15 g/cm(3). The enzyme was a mannoprotein with a hexose to protein ratio of 7: 1. The Michaelis constant of the enzyme was 3.3 x 10(-4) M for p-nitrophenyl phosphate as substrate, and the pH optimum was 4.5. The enzyme was competitively inhibited by inorganic phosphate (K(i) = 10(-4) M) and by arsenate (K(i) = 0.5 x 10(-4) M). A wide range of inorganic cations and anions did not affect enzyme activity, but Hg(2+), Cd(2+), and Cu(2+) were inhibitory. F(-) was also inhibitory at low concentrations, but the effect was reversed at higher concentrations. Phosphatase activity was completely destroyed by exposure of the enzyme to 70 C for 12 min, but was destroyed only slowly by proteolytic hydrolysis. The purified glycoprotein enzyme gave a line of identity with the "b" antigen of crude C. albicans homogenates in immunodiffusion and immunoelectrophoresis tests with sera from rabbits inoculated with intact C. albicans cells and from humans with proven candidiasis. Preliminary evidence suggests that the mannan and not the protein portion of the enzyme molecule is responsible for this antigenicity.  相似文献   

13.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed the presence of an 1,497 bp open reading frame, encoding a protein of 499 amino acids. The deduced amino acid sequence was similar to thermostable carboxypeptidase 1 from Pyrococcus furiosus, a member of peptidase family M32. Five motifs, including the HEXXH motif with two histidines coordinated with the active site metal, were conserved. The carboxypeptidase gene was cloned and overexpressed in Escherichia coli. Molecular masses assessed by SDS-PAGE and gel filtration were 61 kDa and 125 kDa respectively, which points to a dimeric structure for the recombinant enzyme, designated TNA1_CP. The enzyme showed optimum activity toward Z-Ala-Arg at pH 6.5 and 70-80 degrees C (k(cat)/K(m)=8.3 mM(-1) s(-1)). In comparison with that of P. furiosus CP (k(cat)/K(m)=667 mM(-1) s(-1)), TNA1_CP exhibited 80-fold lower catalytic efficiency. The enzyme showed broad substrate specificity with a preference for basic, aliphatic, and aromatic C-terminal amino acids. This broad specificity was confirmed by C-terminal ladder sequencing of porcine N-acetyl-renin substrate by TNA1_CP.  相似文献   

14.
Advanced techniques of enzyme production and purification have become prerequisite due to their diverse industrial applications. There is an utmost requirement for screening of new strains capable of synthesising industrially useful enzymes. The present study reports the production and profiling of extracellular proteins expressed by the newly isolated strain of a filamentous fungus, Aspergillus oryzae LC1. The extracellular enzyme production was done by submerged fermentation using Mendel’s and Sternberg’s medium (MSM), and its optimisation was done using one factor at a time (OFAT). The presence of xylanase was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymography. In addition, the profiling of extracellular proteome of Aspergillus oryzae LC1 was carried out by liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). In this study, media optimisation showed 5.7-fold increase in xylanase activity. The multiple bands observed in zymography revealed the presence of various forms of xylanase. A total of 73 proteins were identified in LC-MS/MS analysis. Functional classification showed that the hydrolytic enzymes consisted of 48% glycoside hydrolase, 11% proteases, 1% polysaccharide lyase and esterase’s, 9% oxidoreductases and 30% other proteins. A total of 26 families of glycosidic hydrolase were detected with other protein families such as serine peptidase, S, LysM, G-D-S-L, M35, carboxyl esterase (CE1), pectate lyase (PL) and oxidoreductases. Among the huge diversity of synergistically acting biomass cleaving enzymes, endo-1, 4-β xylanase with isoforms: xyn F1, xyn B, β xylanase and xyn 11A belonging to GH10 family covered the major portion of the total percentage of identified proteins. As per our knowledge, this is the first report of extracellular proteome analysis of Aspergillus oryzae LC1 suggesting its capability for recombinant expression and evaluation in hemicellulose deconstruction applications.  相似文献   

15.
An efficient ß-1,4-glucosidase (BGL) producing strain, Fomitopsis pinicola KMJ812, was isolated and identified based on morphological features and sequence analysis of internal transcribed spacer rDNA. An extracellular BGL was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The relative molecular weight of F. pinicola BGL was determined to be 105 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis, or 110 kDa by size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the BGL had a pH optimum of 4.5 and a temperature optimum of 50°C. The enzyme showed high substrate specificity and high catalytic efficiency (k cat?=?2,990 s?1, K m?=?1.76 mM, k cat/K m?=?1,700 mM?1 s?1) for p-nitrophenyl-β-d-glucopyranoside. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 3, indicating that the F. pinicola BGL is a member of glycoside hydrolase family 3. Although BGLs have been purified and characterized from several other sources, F. pinicola BGL is distinguished from other BGLs by its high catalytic efficiency and strict substrate specificity.  相似文献   

16.
A novel S-hydroxynitrile lyase (HNL) was purified from leaves of a plant, Baliospermum montanum, by ammonium sulfate fractionation and column chromatographies. Full-length cDNA and genomic DNA were cloned and sequenced. The latter contained two introns and one ORF encoding a 263-residue protein (subunit: 29.5 kDa). The hnl gene was expressed in Escherichia coli and the enzyme was characterized including detailed kinetic studies of 20 substrates for (S)-cyanohydrin synthesis. The enzyme exhibited the highest specific activity (178 U/mg), k(cat) (98/s) and k(cat)/K(m) ratio for piperonal. k(cat)/K(m) ratio for aromatic aldehydes was much larger than those of aliphatic aldehydes and ketones. It was strongly inhibited by AgNO?, PMSF, phenol and methyl ethyl ketone, showed an optimum at pH 5, while having activity at range of 4-6.5. It exhibited stability at wide pH range 2.4-11, the highest activity at 20 °C, being active at 0-65 °C. The enzyme showed variations in residues involved in substrate pocket and substrate entrance channel compared to other S-selective HNLs, based on a model was built. C-terminal short truncations provided more enzyme production. Gel filtration revealed a 60-65 kDa molecular mass for this non-FAD enzyme and its C-terminally truncated forms using three buffer compositions, indicating dimeric structures.  相似文献   

17.
18.
Xylanase produced by E. coli HB 101 carrying plasmid pCX311, which contains the xylanase A gene of alkalophilic Bacillus sp. strain C-125, was purified by ammonium sulfate precipitation, DEAE-cellulose column chromatography and Sephadex G-75 gel filtration. The purified enzyme had a molecular weight of 43,000. The pH and temperature optima for its activity were 6~10 and 70°C, respectively. The enzyme retained full activity after incubation at 50°C for 10 min. These enzymatic properties of the xylanase were almost the same as those of xylanase A. But this enzyme was less stable than xylanase A at low pHs. Furthermore, we could purify a larger amount of alkaline xylanase from E. coli than from alkalophilic Bacillus sp. strain C-125.  相似文献   

19.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K(m)(, kcat) and k(cat)/K(m) values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 microM, 2.13 s(-1), 3.5 x 10(4) M(-1) s(-1) and 71 microM, 2.13 s(-1), 3.0 x 10(4) M(-1) s(-1) respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25 degrees C.  相似文献   

20.
Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (K(m) = 7.9 mM; k(cat)/K(m) = 0.73 mM(-1) s(-1)). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (k(cat)/K(m) = 450 mM(-1) s(-1)) than with NADPH (k(cat)/K(m) = 5.5 mM(-1) s(-1)), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu(2+) and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号