首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang S  Zhu J 《Biometrics》2008,64(2):440-448
Summary .   Variable selection in high-dimensional clustering analysis is an important yet challenging problem. In this article, we propose two methods that simultaneously separate data points into similar clusters and select informative variables that contribute to the clustering. Our methods are in the framework of penalized model-based clustering. Unlike the classical L 1-norm penalization, the penalty terms that we propose make use of the fact that parameters belonging to one variable should be treated as a natural "group." Numerical results indicate that the two new methods tend to remove noninformative variables more effectively and provide better clustering results than the L 1-norm approach.  相似文献   

3.
4.
Journal of Mathematical Biology - The 3D microarrays, generally known as gene-sample-time microarrays, couple the information on different time points collected by 2D microarrays that measure gene...  相似文献   

5.

Background  

Microarray technology is increasingly used to identify potential biomarkers for cancer prognostics and diagnostics. Previously, we have developed the iterative Bayesian Model Averaging (BMA) algorithm for use in classification. Here, we extend the iterative BMA algorithm for application to survival analysis on high-dimensional microarray data. The main goal in applying survival analysis to microarray data is to determine a highly predictive model of patients' time to event (such as death, relapse, or metastasis) using a small number of selected genes. Our multivariate procedure combines the effectiveness of multiple contending models by calculating the weighted average of their posterior probability distributions. Our results demonstrate that our iterative BMA algorithm for survival analysis achieves high prediction accuracy while consistently selecting a small and cost-effective number of predictor genes.  相似文献   

6.
Fung ES  Ng MK 《Bioinformation》2007,2(5):230-234
One of the applications of the discriminant analysis on microarray data is to classify patient and normal samples based on gene expression values. The analysis is especially important in medical trials and diagnosis of cancer subtypes. The main contribution of this paper is to propose a simple Fisher-type discriminant method on gene selection in microarray data. In the new algorithm, we calculate a weight for each gene and use the weight values as an indicator to identify the subsets of relevant genes that categorize patient and normal samples. A l(2) - l(1) norm minimization method is implemented to the discriminant process to automatically compute the weights of all genes in the samples. The experiments on two microarray data sets have shown that the new algorithm can generate classification results as good as other classification methods, and effectively determine relevant genes for classification purpose. In this study, we demonstrate the gene selection's ability and the computational effectiveness of the proposed algorithm. Experimental results are given to illustrate the usefulness of the proposed model.  相似文献   

7.
MOTIVATION: An important application of microarray technology is to relate gene expression profiles to various clinical phenotypes of patients. Success has been demonstrated in molecular classification of cancer in which the gene expression data serve as predictors and different types of cancer serve as a categorical outcome variable. However, there has been less research in linking gene expression profiles to the censored survival data such as patients' overall survival time or time to cancer relapse. It would be desirable to have models with good prediction accuracy and parsimony property. RESULTS: We propose to use the L(1) penalized estimation for the Cox model to select genes that are relevant to patients' survival and to build a predictive model for future prediction. The computational difficulty associated with the estimation in the high-dimensional and low-sample size settings can be efficiently solved by using the recently developed least-angle regression (LARS) method. Our simulation studies and application to real datasets on predicting survival after chemotherapy for patients with diffuse large B-cell lymphoma demonstrate that the proposed procedure, which we call the LARS-Cox procedure, can be used for identifying important genes that are related to time to death due to cancer and for building a parsimonious model for predicting the survival of future patients. The LARS-Cox regression gives better predictive performance than the L(2) penalized regression and a few other dimension-reduction based methods. CONCLUSIONS: We conclude that the proposed LARS-Cox procedure can be very useful in identifying genes relevant to survival phenotypes and in building a parsimonious predictive model that can be used for classifying future patients into clinically relevant high- and low-risk groups based on the gene expression profile and survival times of previous patients.  相似文献   

8.

Background  

Microarray data analysis is notorious for involving a huge number of genes compared to a relatively small number of samples. Gene selection is to detect the most significantly differentially expressed genes under different conditions, and it has been a central research focus. In general, a better gene selection method can improve the performance of classification significantly. One of the difficulties in gene selection is that the numbers of samples under different conditions vary a lot.  相似文献   

9.
We have built a computational model for individual aging trajectories of health and survival, which contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information. We combine techniques of modern machine learning with an interpretable interaction network, where health variables are coupled by explicit pair-wise interactions within a stochastic dynamical system. Our dynamic joint interpretable network (DJIN) model is scalable to large longitudinal data sets, is predictive of individual high-dimensional health trajectories and survival from baseline health states, and infers an interpretable network of directed interactions between the health variables. The network identifies plausible physiological connections between health variables as well as clusters of strongly connected health variables. We use English Longitudinal Study of Aging (ELSA) data to train our model and show that it performs better than multiple dedicated linear models for health outcomes and survival. We compare our model with flexible lower-dimensional latent-space models to explore the dimensionality required to accurately model aging health outcomes. Our DJIN model can be used to generate synthetic individuals that age realistically, to impute missing data, and to simulate future aging outcomes given arbitrary initial health states.  相似文献   

10.
Microarray data contains a large number of genes (usually more than 1000) and a relatively small number of samples (usually fewer than 100). This presents problems to discriminant analysis of microarray data. One way to alleviate the problem is to reduce dimensionality of data by selecting important genes to the discriminant problem. Gene selection can be cast as a feature selection problem in the context of pattern classification. Feature selection approaches are broadly grouped into filter methods and wrapper methods. The wrapper method outperforms the filter method but at the cost of more intensive computation. In the present study, we proposed a wrapper-like gene selection algorithm based on the Regularization Network. Compared with classical wrapper method, the computational costs in our gene selection algorithm is significantly reduced, because the evaluation criterion we proposed does not demand repeated training in the leave-one-out procedure.  相似文献   

11.
12.
13.
We present a web-based pipeline for microarray gene expression profile analysis, GEPAS, which stands for Gene Expression Profile Analysis Suite (http://gepas.bioinfo.cnio.es). GEPAS is composed of different interconnected modules which include tools for data pre-processing, two-conditions comparison, unsupervised and supervised clustering (which include some of the most popular methods as well as home made algorithms) and several tests for differential gene expression among different classes, continuous variables or survival analysis. A multiple purpose tool for data mining, based on Gene Ontology, is also linked to the tools, which constitutes a very convenient way of analysing clustering results. On-line tutorials are available from our main web server (http://bioinfo.cnio.es).  相似文献   

14.
Shannon entropy is used to provide an estimate of the number of interpretable components in a principal component analysis. In addition, several ad hoc stopping rules for dimension determination are reviewed and a modification of the broken stick model is presented. The modification incorporates a test for the presence of an "effective degeneracy" among the subspaces spanned by the eigenvectors of the correlation matrix of the data set then allocates the total variance among subspaces. A summary of the performance of the methods applied to both published microarray data sets and to simulated data is given.  相似文献   

15.
MOTIVATION: An important area of research in the postgenomics era is to relate high-dimensional genetic or genomic data to various clinical phenotypes of patients. Due to large variability in time to certain clinical events among patients, studying possibly censored survival phenotypes can be more informative than treating the phenotypes as categorical variables. Due to high dimensionality and censoring, building a predictive model for time to event is more difficult than the classification/linear regression problem. We propose to develop a boosting procedure using smoothing splines for estimating the general proportional hazards models. Such a procedure can potentially be used for identifying non-linear effects of genes on the risk of developing an event. RESULTS: Our empirical simulation studies showed that the procedure can indeed recover the true functional forms of the covariates and can identify important variables that are related to the risk of an event. Results from predicting survival after chemotherapy for patients with diffuse large B-cell lymphoma demonstrate that the proposed method can be used for identifying important genes that are related to time to death due to cancer and for building a parsimonious model for predicting the survival of future patients. In addition, there is clear evidence of non-linear effects of some genes on survival time.  相似文献   

16.
Many gene expression studies attempt to develop a predictor of pre-defined diagnostic or prognostic classes. If the classes are similar biologically, then the number of genes that are differentially expressed between the classes is likely to be small compared to the total number of genes measured. This motivates a two-step process for predictor development, a subset of differentially expressed genes is selected for use in the predictor and then the predictor constructed from these. Both these steps will introduce variability into the resulting classifier, so both must be incorporated in sample size estimation. We introduce a methodology for sample size determination for prediction in the context of high-dimensional data that captures variability in both steps of predictor development. The methodology is based on a parametric probability model, but permits sample size computations to be carried out in a practical manner without extensive requirements for preliminary data. We find that many prediction problems do not require a large training set of arrays for classifier development.  相似文献   

17.
The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has been useful only for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. Here we present a method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available online (http://rafalab.jhsph.edu/barcode/).  相似文献   

18.
Qiu J  Hwang JT 《Biometrics》2007,63(3):767-776
Summary Simultaneous inference for a large number, N, of parameters is a challenge. In some situations, such as microarray experiments, researchers are only interested in making inference for the K parameters corresponding to the K most extreme estimates. Hence it seems important to construct simultaneous confidence intervals for these K parameters. The naïve simultaneous confidence intervals for the K means (applied directly without taking into account the selection) have low coverage probabilities. We take an empirical Bayes approach (or an approach based on the random effect model) to construct simultaneous confidence intervals with good coverage probabilities. For N= 10,000 and K= 100, typical for microarray data, our confidence intervals could be 77% shorter than the naïve K‐dimensional simultaneous intervals.  相似文献   

19.
基因芯片数据在本质上是非线性的,因此用线性数据分析方法处理基因芯片数据将不可避免的会带来偏差。全面分析非线性降维方法(Isomap)的技术特点以及将其应用到基因芯片数据分析中所需要注意的事项具有一定的意义。  相似文献   

20.
Selection on phenotypes may cause genetic change. To understand the relationship between phenotype and gene expression from an evolutionary viewpoint, it is important to study the concordance between gene expression and profiles of phenotypes. In this study, we use a novel method of clustering to identify genes whose expression profiles are related to a quantitative phenotype. Cluster analysis of gene expression data aims at classifying genes into several different groups based on the similarity of their expression profiles across multiple conditions. The hope is that genes that are classified into the same clusters may share underlying regulatory elements or may be a part of the same metabolic pathways. Current methods for examining the association between phenotype and gene expression are limited to linear association measured by the correlation between individual gene expression values and phenotype. Genes may be associated with the phenotype in a nonlinear fashion. In addition, groups of genes that share a particular pattern in their relationship to phenotype may be of evolutionary interest. In this study, we develop a method to group genes based on orthogonal polynomials under a multivariate Gaussian mixture model. The effect of each expressed gene on the phenotype is partitioned into a cluster mean and a random deviation from the mean. Genes can also be clustered based on a time series. Parameters are estimated using the expectation-maximization algorithm and implemented in SAS. The method is verified with simulated data and demonstrated with experimental data from 2 studies, one clusters with respect to severity of disease in Alzheimer's patients and another clusters data for a rat fracture healing study over time. We find significant evidence of nonlinear associations in both studies and successfully describe these patterns with our method. We give detailed instructions and provide a working program that allows others to directly implement this method in their own analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号