首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective:  Chondrocytes inevitably decrease production of cartilaginous matrices during long-term cultures with repeated passaging; this is termed dedifferentiation. To learn more concerning prevention of dedifferentiation, we have focused here on the fibroblast growth factor (FGF) family that influences chondrocyte proliferation or differentiation.
Materials and methods:  We have compared gene expression between differentiated cells in passage 3 (P3) and dedifferentiated ones in P8 of human cultured chondrocytes. We also performed ligand administration of the responsive factor or its gene silencing, using small interfering RNA (siRNA).
Results:  FGFs 1, 5, 10, 13 and 18 were higher at P8 compared to P3, while FGFs 9 and 14 were lower. Especially, FGF18 showed a 10-fold increase by P8. Ligand administration of FGF18 in the P3 cells, or its gene silencing using siRNA in the P8 cells, revealed dose-dependent increase and decrease respectively in type II collagen/type I collagen ratio. Exogenous FGF18 also upregulated expression of transforming growth factor beta (TGF-β), the anabolic factor of chondrocytes, in P3 chondrocytes, but P8 cells maintained a low level of TGF-β expression, suggesting a decrease in responsiveness of TGF-β to FGF18 stimulation in the dedifferentiated chondrocytes.
Conclusion:  FGF18 seems to play a role in maintenance of chondrocyte properties, although its expression was rather high in dedifferentiated chondrocytes. Upregulation of FGF18 in dedifferentiated chondrocytes implied that it may be a marker of dedifferentiation.  相似文献   

2.
Objectives:  Technical limitations and evolution of therapeutic applications for cell culture-derived products have accelerated elimination of animal-derived constituents from such products to minimize inadvertent introduction of microbial contaminants, such as fungi, bacteria or viruses. The study described here was conducted to investigate the proliferative effect of vegetable peptone on adult stem cells in the absence of serum, and its possible mechanisms of action.
Materials and methods:  Cell viability and proliferation were determined using the MTT assay and Click-iT™ EdU flow cytometry, respectively. In addition, changes in expression of cytokine genes were analysed using MILLIPLEX™ human cytokine enzyme-linked immunosorbent assay kit.
Results:  Viability of cord blood-derived mesenchymal stem cells (CB-MSC) and adipose tissue-derived stem cells (ADSC) increased significantly when treated with the peptone. In addition, median value of the group treated with peptone shifted to the right when compared to the untreated control group. Furthermore, quantitative analysis of the cytokines revealed that production of vascular endothelial growth factor (VEGF), transforming growth factor-beta1 (TGF-β1), and interleukin-6 (IL-6) increased significantly in response to treatment with our vegetable peptone in both CB-MSCs and ADSCs.
Conclusions:  Our findings revealed that the vegetable peptone promotes proliferation of CB-MSCs and ADSCs. In addition, results of this study suggest that induction of stem cell proliferation by vegetable peptone is likely to be related to its induction of VEGF, TGF-β1, and IL-6 expression.  相似文献   

3.
Objective:  This study has aimed to study different culture systems that might stimulate an increase in cell proliferation of normal and osteoarthritis chondrocytes from articular cartilage in rat model.
Material and Methods:  Three culture systems using chondrocytes embedded in alginate beads were tested: chondrocytes cultured in Dulbecco's modified Eagle's medium (DMEM) as control, a co-culture system consisting of a monolayer of de-differentiated chondrocytes as a source of mitotic factors, and an enriched medium containing culture medium obtained from a monolayer of chondrocytes and DMEM. Normal and osteoarthritis chondrocytes were stained with 5-carboxyfluorescein diacetate succinimidyl ester and were cultured in each of the three systems. After 5 days of culture cell, proliferation was detected by flow cytometry. Chondrocyte phenotype was confirmed by collagen type II and MMP-3 expression. To determine possible molecules released into the medium by the cultured chondrocyte monolayer and which would probably be involved in cell proliferation, a study of mRNA and expression of transforming growth factor-β1 (TGF-β1), fibroblastic growth factor-2 (FGF-2), epidermal growth factor (EGF), platelet derived growth factor-A (PDGF-A) and insulin-like growth factor-1 (IGF-1) proteins was conducted.
Results and Conclusions:  Chondrocytes in the co-culture system or in enriched medium showed an increase in proliferation; only when osteoarthritis chondrocytes were cultured in enriched medium would they display a statistically significant increase in their proliferation rate and in their viability. When chondrocytes from the monolayer were analysed, differential mRNA expression of TGF-β1 and IGF-1 was found during all passages, which suggests that these two growth factors might be involved in chondrocyte proliferation.  相似文献   

4.
5.
6.
Abstract.  Objectives : Both interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) are crucially involved in fibrotic events that characterize interstitial lung diseases (ILD). Therefore, the aim of this study was to investigate in primary cultures of normal and fibrotic human lung fibroblasts (HLF), exposed to either IL-6 or TGF-β1, the effects on phosphorylation of mitogen-activated protein kinases (MAPK) and cell growth of IL-6 signalling inhibition, performed by the IL-6 receptor superantagonist Sant7. Materials and methods : MAPK phosphorylation was detected by Western blotting, HLF viability and proliferation were evaluated using the trypan blue staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. Results : Sant7, at a concentration of 1 µg/mL, was capable of significantly inhibiting HLF proliferation and MAPK phosphorylation induced by cell exposure to IL-6 (100 ng/mL) or TGF-β1 (10 ng/mL), whose actions were more evident in fibrotic cells. Conclusions : These findings suggest that, in HLFs derived from patients with ILDs, the proliferative mechanisms activated by TGF-β1 are at least in part mediated by an increased release of IL-6, leading to phosphorylation-dependent MAPK activation. Such preliminary findings may thus open new therapeutic perspectives for fibrogenic ILDs, based on inhibition of signal transduction pathways stimulated by the IL-6 receptor.  相似文献   

7.
Objectives:  Activation of SMAD-independent p44/42 MAPK (ERK1/2) signalling by TGFβ has been recently reported in various cell types. However, the mechanisms for the linkage between the SMAD-dependent and -independent pathways are poorly understood. In this study, we investigated whether TGF-β activates the ERK pathway and how TGFβ communicates with the MAP kinase signals induced by a mitogen, in human myeloid leukaemia cells.
Materials and methods and results:  TGFβ dramatically suppressed proliferation of MV4–11 and TF-1 cells without detectable phosphorylation of ERK1/2 and MEK1/2 for the duration of 48 h, as detected by MTT assay and Western blot analysis, respectively. In contrast, GM-CSF induced rapid and transient phosphorylation of MEK1/2 and ERK1/2 and up-regulated cell proliferation. Both GM-CSF-induced ERK1/2 activation and cell proliferation were significantly inhibited by TGFβ. GM-CSF also induced transient phosphorylation of the p85 subunit of PI3-kinase. Corresponding to this change, phosphorylated p85 was found to bind to the GM-CSF receptor-α subunit, as detected by immunoprecipitation and Western blot analysis. PD98059, a selective inhibitor of MEK, blocked GM-CSF-induced phosphorylation of MEK and ERK but not p85. However, TGFβ and LY294002, a potent inhibitor of PI3-kinase, significantly inhibited phosphorylation of both p85 and ERK1/2.
Conclusions:  These studies thus indicate that TGFβ does not activate the ERK pathway but turns off the GM-CSF-induced ERK signal via inhibition of the PI3-kinase-Akt pathway, in these human laeukemia cells.  相似文献   

8.
Among the broad variety of compounds generated via oxidative reactions in low-density lipoproteins (LDL) and subsequently found in the atherosclerotic plaque are aldehydes that are still esterified to the parent lipid, termed core aldehydes. The most represented cholesterol core aldehyde in LDL is 9-oxononanoyl cholesterol (9-ONC), an oxidation product of cholesteryl linoleate. 9-ONC, at a concentration detectable in biological material, markedly up-regulates mRNA expression and protein level of both the pro-fibrogenic and pro-apoptotic cytokine transforming growth factor β1 (TGF-β1) and the TGF-β receptor type I (TβRI) in human U937 promonocytic cells. We also observed increased membrane presentation of TGF-β receptor type II (TβRII). Experiments employing the TβRI inhibitor SB431542, or the TGFβ antagonist DANFc chimera, have shown that the effect on TβRI is directly induced by 9-ONC, while TβRII up-regulation seems stimulated by its specific ligand, i.e. TGFβ1, over-secreted meanwhile by treated cells. Increased levels of the cytokine and of its specific receptors in 9-ONC-treated cells clearly occurs through stimulation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), as demonstrated by ERK1/2 knockdown experiments using mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MEK1 and MEK2) siRNAs, or PD98059, a selective MEK1/2 inhibitor. 9-ONC might thus sustain further vascular remodeling due to atherosclerosis, not simply by stimulating synthesis of the pro-fibrogenic cytokine TGF-β1 in vascular cells, but also and chiefly by enhancing the TGF-β1 autocrine loop, because of the marked up-regulation of the cytokine's specific receptors TβRI and TβRII.  相似文献   

9.
Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2–ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2–ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.  相似文献   

10.
11.
12.
13.
Objective:  This study aimed to evaluate the effect of raloxifene on vascular endothelial growth factor (VEGF) expression in breast carcinomas of postmenopausal women.
Materials and methods:  Sixteen postmenopausal patients with operable stage II, oestrogen receptor-positive, infiltrating ductal breast carcinoma were treated with raloxifene at a dose of 60 mg/day, for a period of 28 days prior to definitive surgery. Tumour size varied from 3 to 5 cm (mean 3.7 cm) and mean age of patients was 61.8 years (range 49–72 years). Tumour samples were obtained by incisional biopsy at the time of diagnosis and again at the time of surgery. Immunohistochemical evaluation of VEGF expression was assessed semiquantitatively based on fraction of stained tumour cells and on intensity of staining. McNemar's test of symmetry was used to evaluate agreement between positive or negative classification of VEGF expression prior to and following raloxifene treatment ( P  < 0.05).
Results:  Fourteen of the 16 patients (88%) were classified as positive for VEGF expression prior to raloxifene treatment, while only 5 (31%) were classified as positive following treatment ( P  < 0.007).
Conclusion:  Raloxifene significantly reduced VEGF expression in these oestrogen receptor-positive breast carcinomas of postmenopausal women.  相似文献   

14.
Microglia, the immune cells of the CNS, play essential roles in both physiological and pathological brain states. Here we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine, which induces a Parkinson-like neurodegeneration, and to identify the protective factor(s). MCM nearly completely protects CGNs from 6-hydroxydopamine neurotoxicity and at least some of the protective factor(s) are peptidic in nature. While the fraction of the medium containing molecules < 30 kDa completely protects CGNs, fractions containing molecules < 10 kDa or > 10 kDa are not neuroprotective. We further demonstrate that microglia release high amounts of transforming growth factor-β2 (TGF-β2) and that its exogenous addition to the fraction of the medium not containing it (< 10 kDa) fully restores the neuroprotective action. Moreover, MCM neuroprotection is significantly counteracted by an inhibitor of TGF-β2 transduction pathway. Our results identify TGF-β2 as an essential neuroprotective factor released by microglia in its culture medium that requires to be fully effective the concomitant presence of other factor(s) of low molecular weight.  相似文献   

15.
16.
Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collagen synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen (ICTP)] were measured by microdialysis in peritendinous tissue of the Achilles' tendon in six male volunteers before and after treadmill running (1 h, 12 km/h, 3% uphill). In addition, blood levels of TGF-beta1, PICP, and ICTP were obtained. PICP levels increased 68 h after exercise (P < 0.05). Dialysate levels of TGF-beta1 changed from 303 +/- 46 pg/ml (at rest) to 423 +/- 86 pg/ml 3 h postexercise. This change was nonsignificant, but the decay of tissue TGF-beta1 after catheter insertion was markedly delayed by exercise compared with the decay seen in resting subjects. Plasma concentrations of TGF-beta1 rose 30% in response to exercise (P < 0.05 vs. pre). Our observations indicate an increased local production of type I collagen in human peritendinous tissue in response to uphill running. Although not conclusive, changes in circulating and local TGF-beta1, in response to exercise, suggest a role for TGF-beta1 in mechanical regulation of local collagen type I synthesis in tendon-related connective tissue in vivo.  相似文献   

17.
Three possible mechanisms are considered to account for the variations of post-translational modifications in different collagen types. 1) The cells have different amounts of post-translational modifying enzymes, 2) the rate of prolylhydroxylation of different procollagen types is varied, and 3) the rate of chain association of pro-alpha chains of different collagen types is modulated. In an attempt to examine the three possibilities, we have determined the activities of prolyl hydroxylase and lysyl hydroxylase, and we have examined the kinetics of the secretion of procollagens and the kinetics of pro-gamma chain formation of different procollagen types in matrix-free cells isolated from tissues of 17-day-old chick embryos. Type II collagen synthesized by cartilage cells contains more hydroxylysine than type I collagen synthesized by tendon and cornea cells. It was found, however, that cartilage cells contain significantly less lysyl hydroxylase than tendon and cornea cells. In contrast, we found only a small difference in the amount of prolyl hydroxylase in tendon, cornea, and cartilage cells. The secretion of type I procollagen by tendon and cornea cells can be described by two first order processes. In contrast, the secretion of type II procollagen by cartilage cells, type IV procollagen by lens cells, and type V procollagen by cornea cells can be described by single first order processes. Examination of the formation of pro-gamma components of procollagen types I and II revealed that it occurs via intermediate dimers of two pro-alpha chains. The formation or pro-gamma(I) chains in tendon and cornea cells is about three times faster than the formation of pro-gamma(II) chains in cartilage cells. These results are consistent with the hypothesis that the rate of association of pro-alpha chains regulates the synthesis of procollagens with different degrees of post-translational modifications.  相似文献   

18.
19.
20.
Microdialysis studies indicate that mechanical loading of human tendon during exercise elevates type I collagen production in tendon. However, the possibility that the insertion of microdialysis fibers per se may increase the local collagen production due to trauma has not been explored. Insulin-like growth factor I (IGF-I) and its binding proteins (IGFBPs), which are known to stimulate collagen production in animal tendons, may regulate the translation of mechanical loading to collagen synthesis. Systemic and tissue levels of IGF-I, IGFBP, and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen] were measured by microdialysis in peritendinous tissue of the human Achilles tendon in an exercise group (performing a 36-km run, n = 6) and a control group (no intervention, n = 6). An increase in local PICP concentration was seen in both groups after 72 h and stayed elevated in the exercise group at 96 h (P < 0.05). IGFBP-1 in both serum and dialysate increased in the exercise group immediately after exercise (P < 0.05), whereas IGFBP-3 decreased systemically (P < 0.05). Elevation of local IGFBP-4 was observed in both the control and exercise groups after 48 h (P < 0.05). Total IGF-I did not change in locally or systemically in either group. Our results indicate an increased local production of PICP in human peritendinous tissue in response to prolonged mechanical loading with part of the increase due to trauma from the sampling technique. Care must therefore be emphasized to minimize the numbers of insertions with microdialysis. We demonstrated an elevation of IGFBP-1 both systemically and peritendinously in response to prolonged acute exercise. The local increased collagen synthesis was preceded by an elevation of local concentration of IGFBP-4, suggesting that IGFBP-4 may have a key role in the IGF-axis effect on the human collagen synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号