首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute effects of microwave exposure on a repeated acquisition baseline were investigated in three rats. Each session the animals acquired a different four-member response sequence. Each of the first three correct responses advanced the sequence to the next member, and the fourth correct response produced food reinforcement. Incorrect responses produced a three-second timeout. Baseline and control sessions were characterized by a decrease in errors within each session. The animals were acutely exposed to a 2.8 GHz pulsed-microwave field prior to test sessions, with average power densities ranging from 0.25 to 10 mW/cm2. In comparison to control sessions, 1/2 hour of exposure to microwave radiation at power densities of 5 and 10 mW/cm2 increased errors and altered the pattern of within-session acquisition. Exposure to the 10 mW/cm2 power density decreased the rate of sequence completion in all animals. The results of exposures at 0.25, 0.5, and 1 mW/cm2 power densities were generally within the control range. The results are interpreted as indicating a disruption in the discriminative stimulus control of the repeated acquisition behavior.  相似文献   

2.
Confounding factors influencing the sensitivity of biological indicators of microwave exposure--lethality, colonic temperature (Tco), decreased body mass (dW), corticosterone (CS), thyrotropin (TSH), thyroxine (T4), free thyroxine (FT4), and prolactin (PRL) concentration--were studied in Long-Evans (LE), Wistar-Kyoto (WKY), and spontaneous hypertensive (SHR) rats. The microwave signal was 2.45 GHz amplitude modulated at 120 Hz. Test power density ranged from 1 to 50 mW/cm2 for 2 h. In contrast to the LE and WKY rats, the SHR rats were characterized by intolerance (death) between 40 and 50 mW/cm2 (9.2 to 11.5 W/kg). The lowest lethal Tco was 41.1 degrees C. Survivors including all the LE and WKY rats were capable of maintaining Tco lower than 41.0 degrees C. In general, strain of rat seemed to influence other bioindicators and to interact with power density on these bioindicators. Except for Tco and PRL, baseline for the various bioindicators varied among the different strains of rats. Responses of T4 and FT4 were limited in magnitude and inconsistent among strains of rats. In general, the magnitude of Tco increase was more pronounced in SHR than in WKY. Differences between SHR and LE, however, could be noted only at 1, 10, and 50 mW/cm2. Increased Tco, increased magnitude of Dw, increased CS, decreased TSH, and increased PRL (stress reactions) could be noted in rats exposed to 30 mW/cm2 (approximately 6 W/kg) or higher, irrespective of strain. At least two of three strains of rats (WKY and SHR) exposed to 20 mW/cm2 (approximately 4 W/kg) showed changes in Tco, CS, TSH, and PRL. At 10 mW/cm2 (2 W/kg), increased Tco could be found in all three strains of rats accompanied by changes in dW and TSH in LE, TSH in WKY, and dW and CS in SHR. At 1 mW/cm2 (0.2 W/kg), increased Tco could be noted in two of three strains (LE and SHR) and increased PRL in LE only. The smallest Tco increases for a consistent response (increased magnitude of response with power density) were 1.59 degrees C for dW, 0.70 degrees C for CS, 0.24 degrees C for TSH, and 0.97 degrees C for PRL. Tentatively, the threshold intensity for response to microwave exposure for rats could be considered as 2 W/kg or a 0.24 degrees C increase at 24 degrees C ambient temperature.  相似文献   

3.
Two studies were performed to determine if repeated exposure of the avian egg to microwaves can alter metabolism, temperature, and growth rate of embryos. Another aim was to supplement conventional heating with microwave heating and provide an optimal temperature for growth. Japanese quail (Coturnix coturnix japonica) eggs were exposed from day 1 through 15 of incubation (8 h/day) to sham or microwave (2,450 MHz) irradiation. Microwave exposures were at two power densities, 5 or 20 mW/cm2, and at three ambient temperatures (Tas), 30.0, 33.1, or 35.4 degrees C. Specific absorption rates for unincubated and 15-day-old incubated eggs were, respectively, 0.76 and 0.66 W kg-1 mW-1 cm-2 (i.e., 3.8 and 3.3 W/kg at 5 mW/cm2 and 15.2 and 13.2 W/kg at 20 mW/cm2). Eggs were concurrently sham exposed at each of five Tas, ranging from 27.9 to 37.5 degrees C. Tests were conducted during the 16th day of incubation (i.e., 1 day post-treatment), in the absence of microwaves, to determine metabolic rate of embryos and internal and external egg temperatures at different Tas. Repeated exposures to microwaves at 5 and 20 mW/cm2 at the same Ta (30 degrees C) increased wet-embryo mass on the 16th day by an average, respectively, of 9% and 61% when compared with predicted masses for embryos exposed at the same Ta in the absence of microwave radiation. There was no reliable indication, from post-treatment tests and comparisons with control embryos of similar mass, that repeated exposure to microwave radiation resulted in abnormal physiological development. Microwave radiation can be used to increase egg temperature and embryonic growth rate at Tas below normal incubation level without altering basic metabolic and thermal characteristics of the developing bird.  相似文献   

4.
WISH cell cultures 24 hours after passage were irradiated with 3 GHz microwaves (10 cm) at far field conditions in free space (anechoic chamber) for 30 minutes, at field power density 5 or 20 mW/cm2. Within 1,24 and 48 hours of the exposure to microwave fields the volumes of nuclei and nucleoli were measured with the use of a micrometer, and logvolumes and nucleo-nucleolar ratios were calculated. Under the applied irradiation conditions the culture medium temperature did not exceed 37 degrees C. In cultures irradiated at field power density 20 mW/cm2 increased number of cells with small nuclei and enlarged nucleoli was noted within 1 hour of the exposure. Within 24 and 48 hours after irradiation the nucleolar volume showed a slight decrease, whereas the nuclear volume increased. In cultures irradiated at field power density 5 mW/cm2 increased numbers of cells with enlarged nuclei and nucleoli were found. Analysis of the distribution curves of nuclear and nucleolar volumes suggests that non-thermal power densities of microwaves stimulate the metabolism of cell cultures. However, at higher power densities (20 mW/cm2) the stimulation phase is preceded by a period of reduced viability of cell cultures.  相似文献   

5.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

6.
Fertile eggs of the Coturnix quail were exposed twice a day for 30 min to 2.45-GHz continuous wave radiation at power densities of 25 or 50 mW cm-2 throughout the 17-day incubation period. Other eggs were exposed to 20 degrees C or 24 degrees C temperatures twice daily. Repeated exposures to 20 degrees C, 24 degrees C, or 25 mW cm-2 did not reduce hatchability. Irradiation at 50 mW cm-2 lowered hatchability, probably as a result of high egg temperatures. Hatchlings that had been irradiated by microwaves as embryos had normal growth rates and no obvious developmental abnormalities.  相似文献   

7.
Summary An investigation was conducted to determine the effects of relatively low power density microwave exposures on various serum components of the Dutch rabbit. Both continuous wave and pulsed mode exposures at 2.45 GHz were used at power densities of 25, 10 and 5 mW/cm2. Studies of 10 serum components were performed. Additional studies were conducted on changes in sleeping times of pentobarbital-sedated rabbits at various power densities. Gross and histopathological examinations were performed on representative samples of animals.Changes in the blood chemistry of irradiated animals were consistent with a dose-dependent response to a non-specific thermal stress at all power densities used. Observed physiological response, as well as rectal temperature measurements, indicated that the thermoregulatory capability of the rabbits was sufficient to compensate for the thermal burden at 5 and 10 mW/cm2, but could be overridden by a 2 h exposure at 25 mW/cm2. Pathology findings included a mild, repairable nephrosis in animals exposed at a power density of 25 mW/cm2.A further investigation of analeptic effects at power densities varying from 5 mW/cm2 to 50 mW/cm2 resulted in a statistically significant decrease in sleeping times, apparently proportional to power density below 15 mW/cm2.This research was partially supported by the US Army Medical Research and Development Command, Contract No. DADA17-72-C-2144. (The views expressed are those of the authors and do not necessarily reflect those of the Department of the Army)  相似文献   

8.
The nature of the response of the thyroid gland in animals exposed to microwave irradiation is controversial. An enlarged thyroid and an increase of radioiodine uptake in microwave workers have been reported. Absence of thyroid disorders has also been reported in other exposed populations. Animal experimentation has contributed to the controversy because both increased and decreased thyroid functions have been reported. The thyroxine concentration in rats as representative of thyroid function in animals exposed to 2.45-GHz, 120-Hz amplitude-modulated microwaves has been studied. Comparison was made between thyroxine concentrations in microwave- and sham-exposed rats by Student's t test. After a 1-hr exposure, an increased thyroxine concentration was found in rats exposed at 40 and 70 mW/cm2, but not at 1, 5, 10, 20, 50, or 60 mW/cm2. After a 2-hr exposure, increased thyroxine concentration was noted in rats exposed at 25, 30, and 40 mW/cm2, but not at 1, 5, 10, and 20 mW/cm2. After a 4-hr exposure, thyroxine concentration increased in rats exposed at 1 mW/cm2 and decreased in rats exposed at 20 mW/cm2; but changes were not noted at 5 or 10 mW/cm2. Other experiments included animals that were exposed once for 4 hr (0.1, 1, 10, 25, and 40 mW/cm2), sampled 24 hr after a 4-hr exposure (0.1, 1, 10, 25, and 40 mW/cm2), or exposed for 4 hr 3 times (1, 10, 20, 30, 40, and 55 mW/cm2) and 10 times (1, 10, 20, 25, 30, and 40 mW/cm2), to evaluate the consistency of the thyroxine response. None of the rats in these experiments displayed any alteration of thyroxine concentration, except that decreased thyroxine was noted in rats exposed at 40 mW/cm2 for the third time. These studies covered a long time span; rats from two commercial sources (BS and CR) were used and subjected to different numbers of exposures, and therefore these data were evaluated for their stability. Two factors could influence the result significantly, i.e., source of animal and number of sham exposures. Rats used in the 2-hr exposures were from two different commercial sources; rats from CR had a higher (but normal) thyroxine concentration than did rats from BS. Therefore the data of these animals were separated by commercial source for reevaluation. Instead of increased thyroxine concentration in rats exposed at 25, 30, and 40 mW/cm2, changes were not noted in any microwave-exposed rats. The influence of sham exposure revealed that appropriate concurrent control and specification of animal source are needed in longitudinal studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In an effort to understand microwave heating better, regional brain and core temperatures of rats exposed to microwave radiation (2450 MHz) or elevated air temperatures were measured in two studies. In general, we have found no substantial evidence for temperature differentials, or "hot spots," in the brain of these animals. In the first study, after a 30-min exposure, no temperature differences between brain regions either after microwave or ambient air exposure were found. However, a highly significant correlation between brain and core temperatures was found and this correlation was the same for both microwave and ambient air heating. In the second study, time-temperature profiles were measured in rats exposed to either 30 mW/cm2 or 36.2 degrees C. In this study, the 30-min exposure period was divided into seven intervals and the change in temperature during each period was analyzed. Only the cortex showed significantly different heating rates between the air heating and microwave heating; however, this difference disappeared after the initial 5 min of exposure.  相似文献   

10.
The present study was undertaken to investigate the thermal adjustments of squirrel monkeys exposed in a cold environment to relatively high energy levels of microwave fields. The animals (Saimiri sciureus) were equilibrated for 90 min to a cool environment (Ta = 20 degrees C) to elevate metabolic heat production (M). They were then exposed for brief (10-min) or long (30-min) periods to 2,450-MHz continuous-wave microwaves. Power densities (MPD) were 10, 14, 19, and 25 mW/cm2 during brief exposures and 30, 35, 40, and 45 mW/cm2 during long exposures (rate of energy absorption: SAR = 0.15 [W/kg]/[mW/cm2]). Individual exposures were separated by enough time to allow physiological variables to return to baseline levels. The results confirm that each microwave exposure induced a rapid decrease in M. In a 20 degree C environment, the power density of a 10-min exposure required to lower M to approximate the resting level was 35 mW/cm2 (SAR = 5.3 W/kg). During the long exposures, 20 min was needed to decrease M to its lowest level. Cessation of irradiation was associated with persistence of low levels of M for periods that depended on the power density of the preceding microwave exposure. Vasodilation, as indexed by changes in local skin temperature, occurred at a high rate of energy absorption (SAR = 4.5 W/kg) and was sufficient to prevent a dramatic increase in storage of thermal energy by the body; vasoconstriction was reinstated after termination of irradiation. Patterns of thermophysiological responses confirm the influence both of peripheral and of internal inputs to thermoregulation in squirrel monkeys exposed to microwaves in a cool environment.  相似文献   

11.
This study was designed to identify and measure changes in thermoregulatory responses, both behavioral and physiological, that may occur when squirrel monkeys are exposed to 2450-MHz continuous wave microwaves 40 hr/week for 15 weeks. Power densities of 1 or 5 mW/cm2 (specific absorption rate = 0.16 W/kg per mW/cm2) were presented at controlled environmental temperatures of 25, 30, or 35 degrees C. Standardized tests, conducted periodically, before, during, and after treatment, assessed changes in thermoregulatory responses. Dependent variables that were measured included body mass, certain blood properties, metabolic heat production, sweating, skin temperatures, deep body temperature, and behavioral responses by which the monkeys selected a preferred environmental temperature. Results showed no reliable alteration of metabolic rate, internal body temperature, blood indices, or thermoregulatory behavior by microwave exposure, although the ambient temperature prevailing during chronic exposure could exert an effect. An increase in sweating rate occurred in the 35 degrees C environment, but sweating was not reliably enhanced by microwave exposure. Skin temperature, reflecting vasomotor state, was reliably influenced by both ambient temperature and microwaves. The most robust consequence of microwave exposure was a reduction in body mass, which appeared to be a function of microwave power density.  相似文献   

12.
The influence of central substance P (SP) administration on alcohol intake and brain dopamine metabolism within mesocortico-limbic and nigrostiatal systems of rats exposed to ethanol, was studied. During 6 months, the rats consumed 15% ethanol solution instead of water. Central administration of SP (3 mcg/kg) decreased alcohol consumption by 41% in alcohol-preference animals. After long-term ethanol exposure ratios DOPAC/DA and HVA/DA were reduced in striatum and accumbens. SP in dose 3 mcg/kg increased content of DOPAC by 17% and HVA by 23% as well as DOPAC/DA by 9%, HVA/DA by 19% in accumbens. Whereas in striatum only increased DOPAC (28%) and HVA (29%) were observed as compared with saline-treated rats.  相似文献   

13.
Research has been carried out to investigate the effects of microwave exposure (7 GHz, surface energy density 10-50 mW/cm2, SAR 2.1-10.5 W/kg) on learned behaviors of rats in the paradigm of conditioned avoidance reflex. It was shown that transitory reductions in conditioned behavior after acute microwave exposure occurred at an SAR equal to the intensity of rat basal metabolism. It was found cumulative effects for intermittent exposures of rats at a power density of 10 mW/cm2.  相似文献   

14.
Six-hundred-and-one male Long-Evans rats were used to study the effect of microwaves on adrenocortical secretion. Power density ranged from 0.1 to 55 mW/cm2 (SAR 0.02 to 11 W/kg). The microwave signal was 2.45 GHz amplitude modulated at 120 Hz. Serum corticosterone (CS) concentration was used as an index of adrenocortical function. Ten different exposure protocols were used to identify confounding factors influencing the sensitivity of adrenal cortex to microwave exposure. Increases in CS concentration were proportional to power density or colonic temperature and inversely proportional to the baseline CS. Increased CS concentration was never observed without increased colonic temperature and was not persistent 24 h after exposure. Acclimation (reduction in magnitude of response) could be noted after the tenth exposure. Facilitated heat loss attenuated the magnitude of CS increases by limiting the degree of hyperthermia. Ethanol enhanced the hyperthermic response and desensitized the adrenal response to microwave hyperthermia by increased baseline CS. Ether stimulated adrenal secretion irrespective of previous microwave exposure or adrenal stimulation induced by microwaves. Minor inhibition was also noted occasionally as decreased CS concentration at lower intensity (less than 20 mW/cm2) and decreased postexposure urinary CS excretion at 40 mW/cm2. Adrenal stimulation required minimally a 20 mW/cm2 (4 W/kg) or 0.7 degrees C increase in colonic temperature. An SAR lower than 4 W/kg may stimulate adrenal secretion by potentiating the hyperthermic effect if the ambient temperature is well above 24 degrees C.  相似文献   

15.
Effect of 2,450 MHz microwave radiation on the development of the rat brain   总被引:1,自引:0,他引:1  
M Inouye  M J Galvin  D I McRee 《Teratology》1983,28(3):413-419
Male Sprague-Dawley rats were exposed to 2,450 MHz microwave radiation at an incident power density of 10 mW/cm2 daily for 3 hours from day 4 of pregnancy (in utero exposure) through day 40 postpartum, except for 2 days at the perinatal period. The animals were killed, and the brains removed, weighed, measured, and histologically examined at 15, 20, 30, and 40 days of age. The histologic parameters examined included the cortical architecture of the cerebral cortex, the decline of the germinal layer along the lateral ventricles, the myelination of the corpus callosum, and the decline of the external germinal layer of the cerebellar cortex. In 40-day-old rats, quantitative measurements of neurons were also made. The spine density of the pyramidal cells in layer III of the somatosensory cortex, and the density of basal dendritic trees of the pyramidal cells in layer V were measured in Golgi-Cox impregnated specimens. In addition, the density of Purkinje cells and the extent of the Purkinje cell layer in each lobule were measured in midsagittal sections of the cerebellum stained with thionin. There were no remarkable differences between microwave-exposed and control (sham-irradiated) groups for any of the histologic or quantitative parameters examined; however, the findings provide important information on quantitative measurements of the brain. The data from this study failed to demonstrate that there is a significant effect on rat brain development due to microwave exposure (10 mW/cm2) during the embryonic, fetal, and postnatal periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Although decreased serum thyrotropin (TSH) concentration has been found to be part of the endocrine response pattern in rats exposed to microwaves and other stimuli, the response of individual endocrine organs was not activated simultaneously by a given irradiance. Therefore, analytical evaluation of the function of endocrine organs individually as well as collectively is required to characterize the extent of biological involvement in microwave exposure. We have studied the changes in TSH concentration in unanesthetized rats exposed to 2.45 GHz amplitude modulated (120 Hz) microwaves in the far field for 2 and 4 h, between 0 and 55 mW/cm2, and from 1 to 10 times to demonstrate any possible cumulation, acclimation, or sensitization process. Ether inhalation was administered to test the responsiveness of TSH in groups of rats that failed to respond to microwave exposure by lowering TSH concentration. In addition, groups of rats were sampled 24 h after microwave exposure to test the persistency of the microwave effect on serum TSH concentration. Results showed that TSH concentration decreased in rats after microwave exposure. Influence of microwave exposure on serum TSH concentration was independent of the number of exposures indicating absence of cumulation, acclimation, or sensitization. The microwave effect on serum TSH could be dependent on duration of exposure. Decreased TSH concentration was usually accompanied by increased colonic temperature. For 4-h exposure, the lowest irradiance was 20 mW/cm2 or a 0.3 degree C increase in colonic temperature independent of the number of exposures. For 2-h exposure, the lowest irradiance was 30 mW/cm2 or a 1.1 degree C increase in colonic temperature regardless of the number of exposures. All the rats exposed at 10 mW/cm2 for 2 h had a lower TSH concentration than those of sham-exposed rats. Occasionally, significant reduction in TSH concentration could not be found in rats exposed to 20 or 25 mW/cm2 for 2 h. None of the rats exposed at an irradiance lower than 10 mW/cm2 had any change in TSH concentration. Failure of change in TSH concentration in response to microwave exposure was not a reflection of a deficiency since these rats responded to ether inhalation by lowering their TSH concentration. The effect of microwave exposure on TSH concentration was not persistent after exposure. The relation between TSH concentration and colonic temperature was curvilinear (exponential). From these results, two mechanisms and their implications for man were discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The effects of pulsed-(PW) and continuous-wave (CW) 2.8-GHz microwaves were compared on the performance of rodents maintained by a temporally defined schedule of positive reinforcement. The schedule involved food-pellet reinforcement of behavior according to a differential-reinforcement-of-low-rate (DRL) contingency. The rats were independently exposed to PW and to CW fields at power densities ranging from 1 to 15 mW/cm2. Alterations of normal performance were more pronounced after a 30-minute exposure to the PW field than to the CW field. The rate of emission of appropriately timed responses declined after exposure to PW at 10 and 15 mW/cm2, whereas exposure at the same power levels to the CW field did not consistently affect the rate of responding. Change in performance associated with microwave exposure was not necessarily related to a general decline in responding: in some instances, increases in overall rates of responding were observed.  相似文献   

18.
To compare the effects of exposure to a near-resonant frequency of microwaves at two orientations with a higher frequency exposure, five rhesus monkeys were exposed for 4 hr to 225 MHz, electric field oriented parallel to the long axis of the body (225 MHz-E), and to 225 MHz, magnetic field orientation (225 MHz-H), or to 1290 MHz, electric field orientation. On a separate occasion, the monkeys were exposed at night to 225 MHz-E. Exposures were conducted with the animal chair restrained in an anechoic chamber with rectal temperature continuously monitored. Blood samples were taken hourly during the 225-MHz-E exposures for cortisol analysis. The power densities used were 0, 1.2, 2.5, 5.0, 7.5, 10.0, and 15.0 mW/cm2 for 225 MHz-E (day), 0 and 5 mW/cm2 (225 MHz-E night and 225 MHz-H), and 0, 20, 28, and 38 mW/cm2 (1290 MHz). The monkeys were unable to tolerate exposure at power densities equal to or greater than 7.5 mW/cm2 (5.1 W/kg) at 225 MHz-E for longer than 90 min. The criterion for tolerance was that the rectal temperature would not exceed 41.5 degrees C. Average rectal temperature increases for day exposure to 225 MHz-E were 0.4 and 1.7 degrees C for 4-hr exposures to 2.5 and 5.0 mW/cm2 (1.7 and 3.4 W/kg). No changes in circulating cortisol levels occurred during any exposures to 5 mW/cm2 or less. Night exposures to 5 mW/cm2 (3.4 W/kg) at 225 MHz-E raised mean rectal temperature 2.1 degrees C. Exposure to 5 mW/cm2 (1.2 W/kg) at 225 MHz-H for 4 hr resulted in a 0.2 degree rise in mean rectal temperature. For 4 hr of 1290-MHz exposure to 20, 28, or 38 mW/cm2 (2.9, 4.0, and 5.4 W/kg), the mean body temperature increases were 0.4, 0.7, and 1.3 degrees C, respectively. The degree of hyperthermia caused by radiofrequency (rf) exposure was shown to be frequency and orientation dependent for equivalent power densities of exposure.  相似文献   

19.
The widespread application of microwaves is of great concern in view of possible consequences for human health. Many in vitro studies have been carried out to detect possible effects on DNA and chromatin structure following exposure to microwave radiation. The aim of this study is to assess the capability of microwaves, at different power densities and exposure times, to induce genotoxic effects as evaluated by the in vitro micronucleus (MN) assay on peripheral blood lymphocytes from nine different healthy donors, and to investigate also the possible inter-individual response variability. Whole blood samples were exposed for 60, 120 and 180 min to continuous microwave radiation with a frequency of 1800 MHz and power densities of 5, 10 and 20 mW/cm(2). Reproducibility was tested by repeating the experiment 3 months later. Multivariate analysis showed that lymphocyte proliferation indices were significantly different among donors (p<0.004) and between experiments (p<0.01), whereas the applied power density and the exposure time did not have any effect on them. Both spontaneous and induced MN frequencies varied in a highly significant way among donors (p<0.009) and between experiments (p<0.002), and a statistically significant increase of MN, although rather low, was observed dependent on exposure time (p=0.0004) and applied power density (p=0.0166). A considerable decrease in spontaneous and induced MN frequencies was measured in the second experiment. The results show that microwaves are able to induce MN in short-time exposures to medium power density fields. Our data analysis highlights a wide inter-individual variability in the response, which was confirmed to be a characteristic reproducible trait by means of the second experiment.  相似文献   

20.
The effect of a temporally incoherent magnetic field noise on microwave-induced DNA single and double strand breaks in rat brain cells was investigated. Four treatment groups of rats were studied: microwave-exposure (continuous-wave 2450-MHz microwaves, power density 1 mW/cm2, average whole-body specific absorption rate of 0.6 W/kg), noise-exposure (45 mG), microwave + noise-exposure, and sham-exposure. Animals were exposed to these conditions for 2h. DNA single- and double-strand breaks in brain cells of these animals were assayed 4h later using a microgel electrophoresis assay. Results show that brain cells of microwave-exposed rats had significantly higher levels of DNA single- and double-strand breaks when compared with sham-exposed animals. Exposure to noise alone did not significantly affect the levels (i.e., they were similar to those of the sham-exposed rats). However, simultaneous noise exposure blocked microwave-induced increases in DNA strand breaks. These data indicate that simultaneous exposure to a temporally incoherent magnetic field could block microwave-induced DNA damage in brain cells of the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号