首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermo-sensitive genic male-sterile (TGMS) wheat line ( Triticum aestivum L.) BNY-S was obtained from the spontaneous mutant of BNY-F. Its fertility was decided by the temperature during the differentiation stage of the spikelets. BNY-S was completely sterile when the temperature was lower than 10 degrees C during the differentiation stage of the spikelets, but fertile when the temperature was higher than 10 degrees C. Genetic analysis indicated that the sterility of BNY-S was controlled by a single recessive gene, which was named as wtms1. An F(2) population, consisting of 3,000 individuals from the cross between BNY-S and Lankao 52-24, was used for genetic analysis and statistical analysis of the TGMS and, out of them, 158 sterile and 93 fertile extremes were present for molecular tagging and mapping of the wtms1 gene. SSR (simple sequence repeat) and AFLP (amplified fragment length polymorphism) techniques combined with BSA (bulked segregant analysis) were used to screen markers linked to the target gene. As a result, wtms1 was preliminarily mapped on chromosome 2B according to SSR analysis. In AFLP analysis, 14 polymorphic AFLP loci were identified with a linkage relation to the wtms1 gene. Then linkage analysis using the F(2) population showed that three of them, E: AAG/M: CTA(163), E: AGG/M: CTC(220) and E: ACA/M: CTA(160), were linked to the wtms1 gene relatively close to a genetic distance of 6.9 cM, 6.9 cM and 13.9 cM, respectively. Finally, the wtms1 gene was mapped between the SSR marker Xgwm 374 and the AFLP marker E: AAG/M: CTA(163) with the distance of 4.8 cM and 6.9 cM, respectively. A partial linkage map was constructed according the SSR and AFLP data.  相似文献   

2.
Genetic analysis of temperature-sensitive male sterilty in rice   总被引:1,自引:0,他引:1  
The present study of genetic analysis is an attempt to precisely characterize diverse temperature-sensitive genic male-sterile (TGMS) lines so as to explore the possibilities of utilizing the most promising in large-scale hybrid seed production. Genetical studies revealed that the TGMS segregants derived from crosses involving TGMS lines ID24 and SA2 expressed differential fertility levels at low-temperature conditions. A majority of these progenies expressed transgressive segregation towards either sterility of fertility, causing instability of sterility and low reversibilty of fertility which may be due to large numbers of single-locus QTLs and their epistatic interactions. We identified two putative genes imparting temperature-sensitive male sterility after observing crosses involving diverse TGMS sources. To identify suitable molecular markers closely linked to the trait we used RAPD, AFLP and microsatellites which generated polymorphism through bulked segregant analysis. AFLP analysis using a smaller genome kit resulted in enormous polymorphism, out of which the combination EAA/MCAG amplified a 330-bp fragment, which closely segregated with the gene at a distance of 5.3 cM. This fragment was eluted for cloning and from the sequence a STS primer (TS200) was developed which produced a dominant polymorphism specific to TGMS. The microsatellite RM257, located earlier on chromosome 9, was linked with the TGMS trait in SA2 at a distance of 6.2 cM. RM257 produced a codominant polymorphism with 145-bp (sterile) and 132-bp (fertile) products. Both individually and collectively, the markers TS200 and RM257 located on either side of the TGMS locus are very useful for marker-assisted selection. Received: 10 April 1999 / Accepted: 29 July 1999  相似文献   

3.
The thermo-sensitive genic male sterility (TGMS) lines play a crucial role in two-line hybrid rice production. For a practical TGMS line, the stability of male sterility is one of the most important technical indicators. In this study, XianS, a spontaneous mutant with stable male sterility from an indica rice cultivar Xianhuangzhan, was classified as a non-pollen type TGMS line. The critical non-pollen sterility point temperature of XianS was determined as 27°C. Genetic analysis demonstrated that the non-pollen sterility in XianS was controlled by a single recessive gene. Using SSR markers and bulked segregant analysis, the TGMS gene in XianS was fine mapped to a 183 kb interval between RMAN81 and RMX21 on chromosome 2. Two markers, 4039-1 and RMX14 completely cosegregated with this gene. Allelism test indicated that the non-pollen phenotype in seven non-pollen type TGMS lines from different sources, XianS, AnnongS-1, Q523S, Q524S, N28S, G421S, and Q527S is caused by the same TGMS gene. Although the location of TGMS gene in XianS is close to the gene OsNAC6, a previously identified candidate gene of tms5 in AnnongS-1, the sequence of OsNAC6 and its promoter region was identical in TGMS line XianS, AnnongS-1, and wild-type Xianhuangzhan. These results suggest that the non-pollen type TGMS trait probably be controlled by the same TGMS gene in different TGMS rice lines, but its real candidate gene still need to be further studied and identified.  相似文献   

4.
Blackspot resistance in the tetraploid rose genotype 91/100–5 had been characterised previously as a single dominant gene in duplex configuration. In the present study a tetraploid progeny (95/3) segregating for the presence of the blackspot resistance gene Rdr1 were screened with 868 RAPD and 114 AFLP primers/primer combinations. Seven AFLP markers were found to be linked to Rdr1 at distances between 1.1 and 7.6 cM. The most closely linked AFLP marker was cloned and converted into a SCAR marker that could be screened in a larger population than the original AFLP and was linked at a distance of 0.76 cM. The cloned fragment was used as an RFLP probe to locate the marker on a chromosome map of diploid roses. This is the first report of markers linked to a resistance gene in roses, and the possibilities of using them for a marker-assisted selection for blackspot resistance as well as for map-based cloning approaches are discussed. Received: 23 December 1999 / Accepted: 25 March 2000  相似文献   

5.
The application of genetic male sterility in hybrid rice production has great potential to revolutionize hybrid seed production methodology. The two-line breeding system by using thermo-sensitive genic male sterility (TGMS) has been discovered and successfully developed as a breeding strategy in rice. One TGMS gene was investigated by a spontaneous rice mutant line, Sokcho-MS, originated from a Korean japonica variety. It was shown that Sokcho-MS is completely sterile at a temperature higher than 27°C and/or lower than 25°C during the development of spikelets, but fertile at the temperature ranging from 25 to 27°C regardless of the levels of day-length. Genetic analysis and molecular mapping based on SSR, STS and EST markers revealed that a single recessive gene locus involved the control of genic male sterility in Sokcho-MS. By using an F2 mapping population derived from a cross between Sokcho-MS and a fertile indica variety Neda, the new TGMS gene, designated as tms6, was mapped primarily to the long arm of chromosome 5 of Oryza sativa at the interval between markers E60663 (2.0 cM) and RM440 (5.8 cM). Subsequently, tms6 was fine mapped to the interval between markers RM3351 (0.1 cM) and E60663 (1.9 cM). As tms6 appeared to be independent of other mapped TGMS genes in rice, the genetic basis of Sokcho-MS was further discussed.  相似文献   

6.
TGMS (thermo-sensitive genic male-sterile) rice is widely used in hybrid rice production. Because of a specific temperature requirement, it can be used only in a narrow rice-growing zone in Asia. A newly discovered reverse thermo-sensitive genic male-sterile line, J207S, has an opposite phynotype compared to the normal TGMS lines. J207S is completely sterile when the temperature is lower than 31°C. Thus, it can be widely used in a larger area. Genetic analysis indicated that the sterility of J207S was controlled by a single recessive gene which was first named as rtms1. An F2 population from the cross between J207S and E921 was developed and used for molecular mapping of the rtms1 gene. The AFLP (amplified fragment length polymorphism) technique, combined with BSA (bulked segregant analysis), was used to screen markers linked to the target gene, and eight polymorphic AFLP loci were identified. Co-segregating analysis using the F2 population showed that two of them, Rev1 and Rev7, were closely linked to the target gene with a recombinant rate of 3.8% and 7.7%, respectively. Both Rev1 and Rev7 were found to be single-copy sequences through Southern analysis. Rev1 was subsequently mapped on chromosome 10 with a doubled-haploid mapping populations derived from the cross CT9993 × IR62266 available at Texas Tech University. RM222 and RG257 were linked to Rev1 at a distance of 11.8 cM and 4.6 cM, respectively. Additional SSR markers from the rice map of Cornell University, RFLP markers from the map of RGP in Japan and the map of Texas Tech University were selected from the region surrounding Rev1 on chromosome 10 to conduct the fine-mapping of the rtms1 gene. Presently, rtms1 was mapped between RM239 and RG257 with genetic distance of 3.6 cM and 4.0 cM, respectively. The most-closely linked AFLP marker, Rev1, 4.2 cM from the rtms1 gene, was sequenced and converted into a SCAR (sequence characterized amplified region) marker which could facilitate marker-assisted selection of the rtms1 gene. Received: 2 November 2000 / Accepted: 21 November 2000  相似文献   

7.
AnnongS-1, a thermo-sensitive genic male-sterile (TGMS) rice line, has a new TGMS gene. Genetic analysis indicated that the sterility of AnnongS-1 was controlled by a single resessive gene named tms5. In our previous studies based on an F2 population from the cross between AnnongS-1 and Nanjing11, tms5 was mapped on chromosome 2. Recently, a RIL (recombinant inbred line) population from the same cross was developed and used for the fine mapping of the tms5 gene. Molecular marker techniques combined with BSA (bulked segregant analysis) were used. As a result, two AFLP markers (AF10, AF8), one RAPD marker (RA4), one STS marker (C365-1), one CAPs marker (G227-1) and four SSR markers (RM279, RM492, RM327, RM324) were found to be closely linked to tms5 gene. The DNA sequences of the RFLP marker of C365 and G227 were found in GenBank, and on the basis of these sequences, many primers were designed to amplify the two parents and their RIL population plants. Finally, the tms5 gene was mapped between STS marker C365-1 and CAPs marker G227-1 at a distance of 1.04 cM from C365-1 and 2.08 cM from G227-1.Communicated by H.F. LinskensY.G. Wang and Q.H. Xing contributed equally to this contribution.  相似文献   

8.
Sugarcane mosaic virus (SCMV) is one of the most important virus diseases of maize in Europe. Genetic analysis on backcross five (BC5) progeny derived from the cross FAP1360A (resistant) × F7 (susceptible) confirmed that at least two dominant genes, Scm1 and Scm2, are required for resistance to SCMV in the progeny of this cross. With the aid of RFLP and SSR marker analyses, Scm1 was mapped in the region of 8.7 cM – between the nucleolus organizer region (nor) and RFLP marker bnl6.29 on the short arm of chromosome 6, while Scm2 was mapped to an interval of 26.8 cM flanked by the RFLP markers umc92 and umc102 near the centromere region of chromosome 3. Both chromosome regions were further enriched for AFLP markers by successful application of a bulked segregant analysis to this oligogenic trait. A total of 23 linked AFLP markers were identified, clustered in chromosome regions adjacent to either Scm1 or Scm2. Seven AFLP markers linked to Scm1 resided within the nor-bnl6.29 interval, and one of them, E3M8-1, showed no recombination with Scm1. Three AFLP markers linked to Scm2 are located between umc92 and umc102. Received: 13 October 1998 / Accepted: 18 January 1999  相似文献   

9.
 The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hordei. With a view towards gene isolation, a population consisting of 950 F2 individuals derived from a cross between the near-isogenic lines ‘P01’ (Mla1) and ‘P10’ (Mla12) was used to construct a high-resolution map of the Mla region. A fluorescence-based AFLP technique and bulked segregant analysis were applied to screen for polymorphic, tightly linked AFLP markers. Three AFLP markers were selected as suitable for a chromosome-landing strategy. One of these AFLP markers and a closely linked RFLP marker were converted into sequence-specific PCR markers. PCR-based screening of approximately 70 000 yeast artificial chromosome (YAC) clones revealed three identical YACs harbouring the Mla locus. Terminal insert sequences were obtained using inverse PCR. The derived STS marker from the right YAC end-clone was mapped distal to the Mla locus. Received: 17 July 1998 / Accepted: 9 August 1998  相似文献   

10.
Towards rice genome scanning by map-based AFLP fingerprinting   总被引:4,自引:0,他引:4  
Map-based DNA fingerprinting with AFLP markers provides a fast method for scanning the rice genome. Three hundred AFLP markers identified with ten primer combinations were mapped in two rice populations. The genetic maps were aligned and almost full coverage of the rice genome was obtained. The transferability of AFLP markers between indica × japonica and indica × indica crosses was tested. The chromosomes were divided into DNA Fingerprint Linkage Blocks (DFLBs) defined by specific AFLP markers. Using these blocks, the degree of similarity or divergence within specific chromosome regions was calculated for nine varieties. Applications of map-based fingerprinting for biodiversity studies and maker-assisted selection are discussed. Received: 6 June 1998 / Accepted: 11 November 1998  相似文献   

11.
White pine blister rust (WPBR), caused by Cronartium ribicola, is a devastating disease in Pinus monticola and other five-needle pines. Pyramiding a major resistance gene (Cr2) with other resistance genes is an important component of integrated strategies to control WPBR in P. monticola. To facilitate this strategy, the objective of the present study was to identify leucine-rich repeat (LRR) polymorphisms, amplified fragment length polymorphisms (AFLPs), and sequence characterized amplified region (SCAR) markers linked to the western white pine Cr2 (BSA) gene for precise gene mapping. Bulked segregant analysis and haploid segregation analysis allowed the identification of 11 LRR polymorphisms and five AFLP markers in the Cr2 linkage. The closest LRR markers were 0.53 Kosambi cM from Cr2 at either end. After marker cloning and sequencing, AFLP marker EacccMccgat-365 and random polymorphic DNA marker U570–843 were converted successfully into SCAR markers. For a potential application in marker-assisted selection (MAS), these two SCAR markers were verified in two western white pine families. This study represents the first report of LRR-related DNA markers linked to C. ribicola resistance in five-needle pines. These findings may help further candidate gene identification for disease resistance in a conifer species.  相似文献   

12.
Rye (Secale cereale L.) is considered to be the most aluminum (Al)-tolerant species among the Triticeae. It has been suggested that aluminum tolerance in rye is controlled by three major genes (Alt genes) located on rye chromosome arms 3RL, 4RL, and 6RS, respectively. Screening of an F6 rye recombinant inbred line (RIL) population derived from the cross between an Al-tolerant rye (M39A-1–6) and an Al-sensitive rye (M77A-1) showed that a single gene controls aluminum tolerance in the population analyzed. In order to identify molecular markers tightly linked to the gene, we used a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis techniques to evaluate the F6 rye RIL population. We analyzed approximately 22,500 selectively amplified DNA fragments using 204 primer combinations and identified three AFLP markers tightly linked to the Alt gene. Two of these markers flanked the Alt locus at distance of 0.4 and 0.7 cM. Chromosomal localization using cloned AFLP and a restriction fragment length polymorphism (RFLP) marker indicated that the gene was on the long arm of rye chromosome 4R. The RFLP marker (BCD1230) co-segregated with the Alt gene. Since the gene is on chromosome 4R, the gene was designated as Alt3. These markers are being used as a starting point in the construction of a high resolution map of the Alt3 region in rye. Received: 29 March 2000 / Accepted: 9 July 2001  相似文献   

13.
Locating the petunia Rf gene on a 650-kb DNA fragment   总被引:1,自引:0,他引:1  
 A bulked segregant analysis was conducted in order to find RAPD and AFLP markers linked to the restorer of fertility (Rf ) gene in petunia. One RAPD marker, OP704, and one AFLP marker, ECCA/ MACT, were found to be closely linked to Rf (<1 cM) in our mapping population produced from an intraspecific Petunia hybrida cross. These two single-copy markers bracketing Rf were then mapped as RFLPs on the tomato map. Despite some rearrangement between the petunia and the tomato genomes, this synteny survey revealed two tomato markers, TG250 and CT24, closely linked to Rf. Physical mapping indicates that CT24, OP704 and ECCA/MACT lie on the same 650-kb MluI fragment. A physical to genetic distance ratio of 400 kb/cM around the Rf gene should make it feasible to identify markers physically very close to Rf. Received: 20 August 1997 / Accepted: 21 October 1997  相似文献   

14.
Chromosomal regions associated with marker segregation distortion in rice were compared based on six molecular linkage maps. Mapping populations were derived from one interspecific backcross and five intersubspecific (indica / japonica) crosses, including two F2 populations, two doubled haploid (DH) populations, and one recombinant inbred (RI) population. Mapping data for each population consisted of 129–629 markers. Segregation distortion was determined based on chi-square analysis (P < 0.01) and was observed at 6.8–31.8% of the mapped marker loci. Marker loci associated with skewed allele frequencies were distributed on all 12 chromosomes. Distortion in eight chromosomal regions bracketed previously identified gametophyte (ga) or sterility genes (S). Distortion in three other chromosomal regions was found only in DH populations, where japonica alleles were over-represented, suggesting that loci in these regions may be associated with preferential regeneration of japonica genotypes during anther culture. Three additional clusters of skewed markers were observed in more than one population in regions where no gametophytic or sterility loci have previously been reported. A total of 17 segregation distortion loci may be postulated based on this study and their locations in the rice genome were estimated. Received: 31 May 1996 / Accepted: 30 September 1996  相似文献   

15.
In a previous study, bulked segregant analysis with amplified fragment length polymorphisms (AFLPs) identified several markers closely linked to the sugarcane mosaic virus resistance genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3. Six AFLP markers (E33M61-2, E33M52, E38M51, E82M57, E84M59 and E93M53) were located on chromosome 3 and two markers (E33M61-1 and E35M62-1) on chromosome 6. Our objective in the present study was to sequence the respective AFLP bands in order to convert these dominant markers into more simple and reliable polymerase chain reaction (PCR)-based sequence-tagged site markers. Six AFLP markers resulted either in complete identical sequences between the six inbreds investigated in this study or revealed single nucleotide polymorphisms within the inbred lines and were, therefore, not converted. One dominant AFLP marker (E35M62-1) was converted into an insertion/deletion (indel) marker and a second AFLP marker (E33M61-2) into a cleaved amplified polymorphic sequence marker. Mapping of both converted PCR-based markers confirmed their localization to the same chromosome region (E33M61-2 on chromosome 3; E35M62-1 on chromosome 6) as the original AFLP markers. Thus, these markers will be useful for marker-assisted selection and facilitate map-based cloning of SCMV resistance genes.  相似文献   

16.
Rice is one of the most important food crops. The temperature-sensitive genic male sterility (TGMS) system provides a great potential for improving food production by hybrids. The use of TGMS system is simple, inexpensive, effective, and eliminates the limitations of the conventional three-line system. A rice gene, tms2, generated by irradiation of a japonica variety has been reported to control TGMS in several rice lines. Previous studies reported genetic markers linked to this gene, and the gene was transferred to an aromatic Thai cultivar. Using information obtained from published databases, we located positions of the reported genetic markers flanking the gene in rice genomic sequences, and developed gene-based markers located inside the flanking markers for polymorphism detection. We found that inbred indica tms2 mutant plants contain about 1 Mb of japonica DNA, in which at least 70 kb was deleted. Using RT-PCR for expression analysis, four genes out of seven genes annotated as expressed proteins located inside the deletion showed expression in panicles. These genes could be responsible for TGMS phenotypes of tms2. In addition, we developed gene-based markers flanking and inside the deletion for selecting the tms2 gene in breeding populations. By genotyping 102 diverse rice lines including 38 Thai rice lines, 5 species of wild rice, and 59 exotic rice lines including TGMS lines and cultivars with desirable traits, a gene-based marker located inside the deletion and one flanking marker were shown to be highly specific for the tms2 mutant.  相似文献   

17.
The reverse photoperiod-sensitive genic male sterility (PGMS) and thermo-sensitive genic male sterility (TGMS) lines have an opposite phenotype compared with normal PGMS and TGMS lines widely used by the two-line system in current hybrid rice seed production. Thus, the application of reverse PGMS and TGMS lines can compensate PGMS and TGMS lines in hybrid rice production. YiD1S is a reverse PGMS line, in which pollen fertility is mainly regulated by day-length, but also influenced by temperature. Genetic analysis indicated that male sterility of YiD1S was controlled by two recessive major genes. An F2 population from a cross between YiD1S and 8528 was developed and used for molecular mapping of the two reverse PGMS genes which were first named rpms1 and rpms2. Both simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) were used in this study. As a result, one reverse PGMS gene (rpms1) was mapped to the interval between SSR markers RM22980 (0.9 cM) and RM23017 (1.8 cM) on chromosome 8. Eight SSR markers, YDS818, RM22984, RM22986, RM22997, YDS816, RM23002, RM339 and YDS810 completely co-segregated with the rpms1 gene. Another reverse PGMS gene (rpms2) was mapped to the interval between SSR markers RM23898 (0.9 cM) and YDS926 (0.9 cM) on chromosome 9. The physical mapping information from publicly available resources shows that the rpms1 and rpms2 loci are located in a region of 998 and 68 kb, respectively. The analysis based on marker genotypes showed that the effect of rpms1 was slightly larger than that of rpms2 and that the two genes interacted in controlling male sterility. H. F. Peng, Z. F. Zhang and B. Wu contributed equally to this work.  相似文献   

18.
Using the amplified fragment length polymorphism (AFLP) technique combined with a ”narrow-down” bulk segregant strategy enabled us to quickly identify 15 tightly linked AFLP markers to the Vf gene that confers resistance to the apple scab disease. High-resolution mapping placed all 15 AFLP markers within an interval of 0.6 cM around the Vf region; 7 of them were found to be inseparable from the Vf gene, 1 was localized left of, and the remaining 7 located right of the Vf gene. In addition, eight previously identified RAPD markers were also mapped, but only three, including M18, AM19, and AL07, were localized within this short interval, and none co-segregated with the Vf gene. The saturation of the Vf region with AFLP markers will accelerate both marker-assisted selection and map-based cloning. The advantages of this ”narrow-down” strategy, estimation of physical distances among AFLP markers, and their potential application are also discussed. Received: 22 December 1999 / Accepted: 25 March 2000  相似文献   

19.
 A PCR-based marker (E20570) linked to the gene Gm4t, which confers resistance to a dipteran pest gall midge (Orseolia oryzae), has been mapped using the restriction fragment length polymorphism (RFLP) technique in rice. Gm4t is a dominant resistance gene. We initially failed to detect useful polymorphism for this marker in a F3 mapping population derived from a cross between two indica parents, ‘Abhaya’בShyamala’, with as many as 35 restriction enzymes. ‘Abhaya’ carries the resistance gene Gm4t and ‘Shyamala’ is susceptible to gall midge. Subsequently, E20570 was mapped using another mapping population represented by a F2 progeny from a cross between ‘Nipponbare’, a japonica variety, and ‘Kasalath’, an indica variety, in which the gene Gm4t was not known to be present. Gm4t mapped onto chromosome 8 between markers R1813 and S1633B. Our method, thus, presents an alternative way of mapping genes which otherwise would be difficult to map because of a lack of polymorphism between closely related parents differing in desired agronomic traits. Received: 1 April 1997 / Accepted: 13 May 1997  相似文献   

20.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号