首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Base flipping is a highly conserved process by which enzymes swivel an entire nucleotide from the DNA base stack into their active site pockets. Uracil DNA glycosylase (UDG) is a paradigm enzyme that uses a base flipping mechanism to catalyze the hydrolysis of the N-glycosidic bond of 2'-deoxyuridine (2'-dUrd) in DNA as the first step in uracil base excision repair. Flipping of 2'-dUrd by UDG has been proposed to follow a "pushing" mechanism in which a completely conserved leucine side chain (Leu-191) is inserted into the DNA minor groove to expel the uracil. Here we report a novel implementation of the "chemical rescue" approach to show that the weak binding affinity and low catalytic activity of L191A or L191G can be completely or partially restored by substitution of a pyrene (Y) nucleotide wedge on the DNA strand opposite to the uracil base (U/A to U/Y). These results indicate that pyrene acts both as a wedge to push the uracil from the base stack in the free DNA and as a "plug" to hinder its reinsertion after base flipping. Pyrene rescue should serve as a useful and novel tool to diagnose the functional roles of other amino acid side chains involved in base flipping.  相似文献   

2.
Jiang YL  Stivers JT  Song F 《Biochemistry》2002,41(37):11248-11254
We recently introduced a new substrate rescue tool for investigating enzymatic base flipping by uracil DNA glycosylase (UDG) in which a bulky pyrene nucleotide wedge (Y) was placed opposite a uracil in duplex DNA (i.e., a U/Y pair), thereby preorganizing the target base in an extrahelical conformation [Jiang, Y. L., et al. (2001) J. Biol. Chem. 276, 42347-54]. The pyrene wedge completely rescued the large catalytic defects resulting from removal of the natural Leu191 wedge, presumably mimicking the pushing and plugging function of this group. Here we employ the pyrene rescue method in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the "pinch, push, plug, and pull" base-flipping mechanism (see the preceding paper in this issue). We find that a U/Y base pair increases the apparent second-order rate constant for damaged site recognition by L191G pushing mutation by 45-fold as compared to a U/A pair, thereby fully rescuing the kinetic effects of the mutation. Remarkably, the U/Y pair also allows L191G to proceed through the conformational docking step that is severely comprised with the normal U/A substrate, and allows the active site of UDG to clamp around the extrahelical base. Thus, pyrene also fulfills the plugging role of the Leu191 side chain. Preorganization of uracil in an extrahelical conformation by pyrene allows diffusion-controlled damage recognition by all of these base-flipping mutants, and allows the UDG conformational change to proceed as rapidly as the rate of uracil flipping with the natural U/A base pair. Thus, the pyrene wedge substrate allows UDG to recognize uracil by a lock-and-key mechanism, rather than the natural induced-fit mechanism. Unnatural pyrene base pairs may provide a general strategy to promote site-specific targeting of other enzymes that recognize extrahelical bases.  相似文献   

3.
The conformation of a bulged DNA base, whether looped-out of the DNA helix or stacked-in between the flanking bases, can be distinguished using fluorescence spectroscopy of an inserted fluorescent base. If 2-aminopurine, a structural analog of adenine and guanine, is placed in duplex DNA as the bulged base replacing an adenine or guanine, it loops out of the DNA helix into solution. This is determined by the decrease or increase of 2-aminopurine fluorescence during DNA thermomelting: if the 2-aminopurine base stacks into the helix, its fluorescence increases or remains about the same during DNA duplex melting, but if the 2-aminopurine base loops out of the helix, its fluorescence decreases upon melting of the DNA duplex.  相似文献   

4.
DNA base flipping, which was first observed for the C5-cytosine DNA methyltransferase M. Hha I, results in a complete removal of the stacking interactions between the target base and its neighbouring bases. We have investigated whether duplex oligodeoxynucleotides containing the fluorescent base analogue 2-aminopurine can be used to sense DNA base flipping. Using M. Hha I as a paradigm for a base flipping enzyme, we find that the fluorescence intensity of duplex oligodeoxynucleotides containing 2-aminopurine at the target site is dramatically enhanced (54-fold) in the presence of M. Hha I. Duplex oligodeoxynucleotides containing 2-aminopurine adjacent to the target cytosine show little fluorescence increase upon addition of M. Hha I. These results clearly demonstrate that duplex oligodeoxynucleotides containing 2-aminopurine at the target site can serve as fluorescence probes for base flipping. Another enzyme hypothesized to use a base flipping mechanism is the N6-adenine DNA methyltransferase M. Taq I. Addition of M. Taq I to duplex oligodeoxynucleotides bearing 2-aminopurine at the target position, also results in a strongly enhanced fluorescence (13-fold), whereas addition to duplex oligodeoxynucleotides containing 2-aminopurine at the 3'- or 5'-neighbouring position leads only to small fluorescence increases. These results give the first experimental evidence that the adenine-specific DNA methyltransferase M. Taq I also flips its target base.  相似文献   

5.
Jiang YL  Stivers JT 《Biochemistry》2002,41(37):11236-11247
The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the "pinch, push, plug, and pull" base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952-963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.  相似文献   

6.
The EcoRV DNA methyltransferase methylates the first adenine in the GATATC recognition sequence. It is presumed that methylation proceeds by a nucleotide flipping mechanism but no crystal structure is available to confirm this. A popular solution-phase assay for nucleotide flipping employs the fluorescent adenine analogue, 2-aminopurine (2AP), substituted at the methylation target site; a substantial increase in fluorescence intensity on enzyme binding indicates flipping. However, this appeared to fail for M.EcoRV, since 2AP substituted for the non-target adenine in the recognition sequence showed a much greater intensity increase than 2AP at the target site. This anomaly is resolved by recording the fluorescence decay of 2AP which shows that the target 2AP is indeed flipped by the enzyme, but its fluorescence is quenched by interaction with aromatic residues in the catalytic site, whereas bending of the duplex at the non-target site alleviates inter-base quenching and exposes the 2AP to solvent.  相似文献   

7.
Human alkyladenine DNA glycosylase "flips" damaged DNA bases into its active site where excision occurs. Tyrosine 162 is inserted into the DNA helix in place of the damaged base and may assist in nucleotide flipping by "pushing" it. Mutating this DNA-intercalating Tyr to Ser reduces the DNA binding and base excision activities of alkyladenine DNA glycosylase to undetectable levels demonstrating that Tyr-162 is critical for both activities. Mutation of Tyr-162 to Phe reduces the single turnover excision rate of hypoxanthine by a factor of 4 when paired with thymine. Interestingly, when the base pairing partner for hypoxanthine is changed to difluorotoluene, which cannot hydrogen bond to hypoxanthine, single turnover excision rates increase by a factor of 2 for the wild type enzyme and about 3 to 4 for the Phe mutant. In assays with DNA substrates containing 1,N(6)-ethenoadenine, which does not form hydrogen bonds with either thymine or difluorotoluene, base excision rates for both the wild type and Phe mutant were unaffected. These results are consistent with a role for Tyr-162 in pushing the damaged base to assist in nucleotide flipping and indicate that a nucleotide flipping step may be rate-limiting for excision of hypoxanthine.  相似文献   

8.
Walker RK  McCullough AK  Lloyd RS 《Biochemistry》2006,45(47):14192-14200
Bacteriophage T4 pyrimidine dimer glycosylase (T4-Pdg) is a base excision repair protein that incises DNA at cyclobutane pyrimidine dimers that are formed as a consequence of exposure to ultraviolet light. Cocrystallization of T4-Pdg with substrate DNA has shown that the adenosine opposite the 5'-thymine of a thymine-thymine (TT) dimer is flipped into an extrahelical conformation and that the DNA backbone is kinked 60 degrees in the enzyme-substrate (ES) complex. To examine the kinetic details of the precatalytic events in the T4-Pdg reaction mechanism, investigations were designed to separately assess nucleotide flipping and DNA bending. The fluorescent adenine base analogue, 2-aminopurine (2-AP), placed opposite an abasic site analogue, tetrahydrofuran, exhibited a 2.8-fold increase in emission intensity when flipped in the ES complex. Using the 2-AP fluorescence signal for nucleotide flipping, kon and koff pre-steady-state kinetic measurements were determined. DNA bending was assessed by fluorescence resonance energy transfer using fluorescent donor-acceptor pairs located at the 5'-ends of oligonucleotides in duplex DNA. The fluorescence intensity of the donor fluorophore was quenched by 15% in the ES complex as a result of an increased efficiency of energy transfer between the labeled ends of the DNA in the bent conformation. Kinetic analyses of the bending signal revealed an off rate that was 2.5-fold faster than the off rate for nucleotide flipping. These results demonstrate that the nucleotide flipping step can be uncoupled from the bending of DNA in the formation of an ES complex.  相似文献   

9.
Shaw RW  Feller JA  Bloom LB 《DNA Repair》2004,3(10):1273-1283
Uracil DNA glycosylase (UDG) excises uracil from DNA to initiate repair of this lesion. This important DNA repair enzyme is conserved in viruses, bacteria, and eukaryotes. One residue that is conserved among all the members of the UDG family is a phenylalanine that stacks with uracil when it is flipped out of the DNA helix into the enzyme active site. To determine what contribution this conserved Phe residue makes to the activity of UDG, Phe-77 in the Escherichia coli enzyme was mutated to three different amino acid residues, alanine (UDG-F77A), asparagine (UDG-F77N), and tyrosine (UDG-F77Y). The effects of these mutations were measured on the steady-state and pre-steady-state kinetics of uracil excision in addition to enzyme.DNA binding kinetics. The overall excision activity of each of the mutants was reduced relative to the wild-type enzyme; however, each mutation gave rise to a different kinetic phenotype with different effects on substrate binding and catalysis. The excision activity of UDG-F77N was the most severely compromised, but this enzyme still bound to uracil-containing DNA at about the same rate as wild-type UDG. In contrast, the decrease in the excision activity of UDG-F77A is likely to reflect a greater reduction in uracil-DNA binding than in the catalytic step. Overall, the effects of the mutations on catalysis are best correlated with the polarity of the substituted residue such that an increase in polarity decreases the efficiency of uracil excision.  相似文献   

10.
Krosky DJ  Song F  Stivers JT 《Biochemistry》2005,44(16):5949-5959
Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that would otherwise be sequestered in the duplex structure. A classic example is the DNA repair enzyme uracil DNA glycosylase (UDG) which recognizes and excises unwanted uracil bases from DNA using a flipping mechanism. Previous work has suggested that enzymatic base flipping begins with dynamic breathing motions of the enzyme-bound DNA substrate, and then, only very late during the reaction trajectory do strong specific interactions with the extrahelical uracil occur. Here we report that UDG kinetically and thermodynamically prefers substrate sites where the uracil is paired with an unnatural adenine analogue that lacks any Watson-Crick hydrogen-bonding groups. The magnitude of the preference is a striking 43000-fold as compared to an adenine analogue that forms three H-bonds. Transient kinetic and fluorescence measurements suggest that preferential recognition of uracil in the context of a series of incrementally destabilized base pairs arises from two distinct effects: weak or absent hydrogen bonding, which thermodynamically assists extrusion, and, most importantly, increased flexibility of the site which facilitates DNA bending during base flipping. A coupled, stepwise reaction coordinate is implicated in which DNA bending precedes base pair rupture and flipping.  相似文献   

11.
The methyltransferase, M.EcoKI, recognizes the DNA sequence 5'-AACNNNNNNGTGC-3' and methylates adenine at the underlined positions. DNA methylation has been shown by crystallography to occur via a base flipping mechanism and is believed to be a general mechanism for all methyltransferases. If no structure is available, the fluorescence of 2-aminopurine is often used as a signal for base flipping as it shows enhanced fluorescence when its environment is perturbed. We find that 2-aminopurine gives enhanced fluorescence emission not only when it is placed at the M.EcoKI methylation sites but also at a location adjacent to the target adenine. Thus it appears that 2-aminopurine fluorescence intensity is not a clear indicator of base flipping but is a more general measure of DNA distortion. Upon addition of the cofactor S-adenosyl-methionine to the M.EcoKI:DNA complex, the 2-aminopurine fluorescence changes to that of a new species showing excitation at 345 nm and emission at 450 nm. This change requires a fully active enzyme, the correct cofactor and the 2-aminopurine located at the methylation site. However, the new fluorescent species is not a covalently modified form of 2-aminopurine and we suggest that it represents a hitherto undetected physicochemical form of 2-aminopurine.  相似文献   

12.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

13.
Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of structurally diverse alkylated and oxidized purine lesions from DNA to initiate the base excision repair pathway. Recognition of a base lesion requires flipping of the damaged nucleotide into a relatively open active site pocket between two conserved tyrosine residues, Y127 and Y159. We have mutated each of these amino acids to tryptophan and measured the kinetic effects on the nucleotide flipping and base excision steps. The Y127W and Y159W mutant proteins have robust glycosylase activity toward DNA containing 1,N(6)-ethenoadenine (εA), within 4-fold of that of the wild-type enzyme, raising the possibility that tryptophan fluorescence could be used to probe the DNA binding and nucleotide flipping steps. Stopped-flow fluorescence was used to compare the time-dependent changes in tryptophan fluorescence and εA fluorescence. For both mutants, the tryptophan fluorescence exhibited two-step binding with essentially identical rate constants as were observed for the εA fluorescence changes. These results provide evidence that AAG forms an initial recognition complex in which the active site pocket is perturbed and the stacking of the damaged base is disrupted. Upon complete nucleotide flipping, there is further quenching of the tryptophan fluorescence with coincident quenching of the εA fluorescence. Although these mutations do not have large effects on the rate constant for excision of εA, there are dramatic effects on the rate constants for nucleotide flipping that result in 40-100-fold decreases in the flipping equilibrium relative to wild-type. Most of this effect is due to an increased rate of unflipping, but surprisingly the Y159W mutation causes a 5-fold increase in the rate constant for flipping. The large effect on the equilibrium for nucleotide flipping explains the greater deleterious effects that these mutations have on the glycosylase activity toward base lesions that are in more stable base pairs.  相似文献   

14.
ADARs are adenosine deaminases responsible for RNA-editing reactions that occur within duplex RNA. Currently little is known regarding the nature of the protein-RNA interactions that lead to site-selective adenosine deamination. We previously reported that ADAR2 induced changes in 2-aminopurine fluorescence of a modified substrate, consistent with a base-flipping mechanism. Additional data have been obtained using full-length ADAR2 and a protein comprising only the RNA binding domain (RBD) of ADAR2. The increase in 2-aminopurine fluorescence is specific to the editing site and dependent on the presence of the catalytic domain. Hydroxyl radical footprinting demonstrates that the RBD protects a region of the RNA duplex around the editing site, suggesting a significant role for the RBD in identifying potential ADAR2 editing sites. Nucleotides near the editing site on the non-edited strand become hypersensitive to hydrolytic cleavage upon binding of ADAR2 RBD. Therefore, the RBD may assist base flipping by increasing the conformational flexibility of nucleotides in the duplex adjacent to its binding site. In addition, an increase in tryptophan fluorescence is observed when ADAR2 binds duplex RNA, suggesting a conformational change in the catalytic domain of the enzyme. Furthermore, acrylamide quenching experiments indicate that RNA binding creates heterogeneity in the solvent accessibility of ADAR2 tryptophan residues, with one out of five tryptophans more solvent-accessible in the ADAR2.RNA complex.  相似文献   

15.
The PspGI restriction–modification system recognizes the sequence CCWGG. R.PspGI cuts DNA before the first C in the cognate sequence and M.PspGI is thought to methylate N4 of one of the cytosines in the sequence. M.PspGI enhances fluorescence of 2-aminopurine in DNA if it replaces the second C in the sequence, while R.PspGI enhances fluorescence when the fluorophore replaces adenine in the central base pair. This strongly suggests that the methyltransferase flips the second C in the recognition sequence, while the endonuclease flips both bases in the central base pair out of the duplex. M.PspGI is the first N4-cytosine MTase for which biochemical evidence for base flipping has been presented. It is also the first type IIP methyltransferase whose catalytic activity is strongly stimulated by divalent metal ions. However, divalent metal ions are not required for its base-flipping activity. In contrast, these ions are required for both base flipping and catalysis by the endonuclease. The two enzymes have similar temperature profiles for base flipping and optimal flipping occurs at temperatures substantially below the growth temperature of the source organism for PspGI and for the catalytic activity of endonuclease. We discuss the implications of these results for DNA binding by these enzymes and their evolutionary origin.  相似文献   

16.
Flipping of a nucleotide out of a B-DNA helix into the active site of an enzyme has been observed for the HhaI and HaeIII cytosine-5 methyltransferases (M.HhaI and M.HaeIII) and for numerous DNA repair enzymes. Here we studied the base flipping motions in the binary M. HhaI-DNA and the ternary M.HhaI-DNA-cofactor systems in solution. Two 5-fluorocytosines were introduced into the DNA in the places of the target cytosine and, as an internal control, a cytosine positioned two nucleotides upstream of the recognition sequence 5'-GCGC-3'. The 19F NMR spectra combined with gel mobility data show that interaction with the enzyme induces partition of the target base among three states, i.e. stacked in the B-DNA, an ensemble of flipped-out forms and the flipped-out form locked in the enzyme active site. Addition of the cofactor analogue S-adenosyl-L-homocysteine greatly enhances the trapping of the target cytosine in the catalytic site. Distinct dynamic modes of the target cytosine have thus been identified along the reaction pathway, which includes novel base-flipping intermediates that were not observed in previous X-ray structures. The new data indicate that flipping of the target base out of the DNA helix is not dependent on binding of the cytosine in the catalytic pocket of M.HhaI, and suggest an active role of the enzyme in the opening of the DNA duplex.  相似文献   

17.
The family 4 uracil-DNA glycosylase from the hyperthermophilic organism Archaeoglobus fulgidus (AFUDG) is responsible for the removal of uracil in DNA as the first step in the base excision repair (BER) pathway. AFUDG contains a large solvent-exposed peptide region containing an α helix and loop anchored on each end via ligation of two cysteine thiolates to a [4Fe-4S](2+) cluster. We propose that this region plays a similar role in DNA damage recognition as a smaller iron-sulfur cluster loop (FCL) motif in the structurally unrelated BER glycosylases MutY and Endonuclease III and therefore refer to this region as the "pseudo-FCL" in AFUDG. In order to evaluate the importance of this region, three positively charged residues (Arg 86, Arg 91, Lys 100) and the anchoring Cys residues (Cys 85, Cys 101) within this motif were replaced with alanine, and the effects of these replacements on uracil excision in single- and double-stranded DNA were evaluated. These results show that this region participates and allows for efficient recognition and excision of uracil within DNA. Notably, R86A AFUDG exhibited reduced activity for uracil removal only within double-stranded DNA, suggesting an importance in duplex disruption and extrusion of the base as part of the excision process. In addition, mutation of the [4Fe-4S](2+) cluster cysteine ligands at the ends of the pseudo-FCL to alanine reduced the uracil excision efficiency, suggesting the importance of anchoring the loop via coordination to the cluster. In contrast, K100A AFUDG exhibited enhanced uracil excision activity, providing evidence for the importance of the loop conformation and flexibility. Taken together, the results herein provide evidence that the pseudo-FCL motif is involved in DNA binding and catalysis, particularly in duplex DNA contexts. This work underscores the requirement of an ensemble of interactions, both distant and in proximity to the damaged site, for accurate and efficient uracil excision.  相似文献   

18.
The base excision repair (BER) pathway for ultraviolet light (UV)-induced cyclobutane pyrimidine dimers is initiated by DNA glycosylases that also possess abasic (AP) site lyase activity. The prototypical enzyme known to catalyze these reactions is the T4 pyrimidine dimer glycosylase (T4-Pdg). The fundamental chemical reactions and the critical amino acids that lead to both glycosyl and phosphodiester bond scission are known. Catalysis proceeds via a protonated imine covalent intermediate between the alpha-amino group of the N-terminal threonine residue and the C1' of the deoxyribose sugar of the 5' pyrimidine at the dimer site. This covalent complex can be trapped as an irreversible, reduced cross-linked DNA-protein complex by incubation with a strong reducing agent. This active site trapping reaction is equally efficient on DNA substrates containing pyrimidine dimers or AP sites. Herein, we report the co-crystal structure of T4-Pdg as a reduced covalent complex with an AP site-containing duplex oligodeoxynucleotide. This high-resolution structure reveals essential precatalytic and catalytic features, including flipping of the nucleotide opposite the AP site, a sharp kink (approximately 66 degrees ) in the DNA at the dimer site and the covalent bond linking the enzyme to the DNA. Superposition of this structure with a previously published co-crystal structure of a catalytically incompetent mutant of T4-Pdg with cyclobutane dimer-containing DNA reveals new insights into the structural requirements and the mechanisms involved in DNA bending, nucleotide flipping and catalytic reaction.  相似文献   

19.
Uracil‐DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil‐DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.  相似文献   

20.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, initiates the uracil excision repair pathway. Ugi, a bacteriophage-encoded peptide, potently inhibits UDGs by serving as a remarkable substrate mimic. Structure determination of UDGs has identified regions important for the exquisite specificity in the detection and removal of uracils from DNA and in their interaction with Ugi. In this study, we carried out mutational analysis of the Escherichia coli UDG at Leu191 within the 187HPSPLS192 motif (DNA intercalation loop). We show that with the decrease in side chain length at position 191, the stability of the UDG-Ugi complexes regresses. Further, while the L191V and L191F mutants were as efficient as the wild type protein, the L191A and L191G mutants retained only 10 and 1% of the enzymatic activity, respectively. Importantly, however, substitution of Leu191 with smaller side chains had no effect on the relative efficiencies of uracil excision from the single-stranded and a corresponding double-stranded substrate. Our results suggest that leucine within the HPSPLS motif is crucial for the uracil excision activity of UDG, and it contributes to the formation of a physiologically irreversible complex with Ugi. We also envisage a role for Leu191 in stabilizing the productive enzyme-substrate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号