首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When bovine heart mitochondrial F1-ATPase, taken as alpha 3 beta 3 gamma delta epsilon with a molecular weight of 375,000, was inactivated by greater than 90% with a 4-fold molar excess of 7-chloro-4-nitro[14C]benzofurazan at pH 7.4, 1.15 mol of 4-nitrobenzofurazan [14C]Nbf were incorporated per mol of enzyme. Reactivation of a sample of the modified enzyme with dithiothreitol removed 0.82 mol of [14C]Nbf/mol of the F1-ATPase indicating that, of the 1.15 mol of [14C]Nbf incorporated, 0.82 mol were present on tyrosine residues and 0.33 mol on lysine residues. Incubation of the modified enzyme at pH 9.0 for 18 h at 23 degrees C led to an increase of 0.64 mol of [14C]Nbf-N'-Lys/mol of the F1-ATPase which occurred as a consequence of an O----N migration. About 15% enzyme reactivation occurred simultaneously with the migration indicating that the fraction of the [14C]Nbf group originally present on tyrosine which did not migrate was lost by hydrolysis. Examination of a tryptic digest of the labeled enzyme after the O----N migration by reversed-phase high-pressure liquid chromatography revealed a single major radioactive peptide. The labeled tryptic fragment was purified and subjected to automatic Edman degradation. This analysis revealed that Lys-beta-162 was specifically labeled during the O----N migration of the [14C]Nbf group.  相似文献   

2.
J A Buechler  S S Taylor 《Biochemistry》1988,27(19):7356-7361
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation [Toner-Webb, J., & Taylor, S. S. (1987) Biochemistry 26, 7371]. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [14C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Sweet potato beta-amylase [EC 3.2.1.2, alpha 1,4-D-glucan maltohydrolase]-catalyzed hydrolyses of aryl beta-maltotriosides with substituents, NO2-, Cl-, and Br- at the o-, m-, and p-positions in the phenyl ring were studied at pH 4.8 and 25 degrees C. The hydrolyses of a few of the maltotriosides by soybean beta-amylase [EC 3.2.1.2, alpha-1,4-D-glucan maltohydrolase] were also studied at pH 5.4 and 25 degrees C. It was found that the aryl beta-maltotriosides were preferentially hydrolyzed into maltose and aryl beta-D-glucosides by both beta-amylases. The Michaelis constant Km and the molecular activity ko were determined for the hydrolyses of these maltotriosides and compared with those of maltotriose and maltotetraose. Aryl beta-maltotriosides were more rapidly hydrolyzed than maltotriose by a factor of 30--80, and more slowly hydrolyzed than maltotetraose by a factor of 10--30, depending on the kinds of substituents. The rapid hydrolysis of aryl beta-maltotrioside as compared with maltotriose may be due to the interaction of an aryl group with the subsite of beta-amylase. This is in contrast with glucoamylase [EC 3.2.1.3, alpha-1,4-D-glucan glucohydrolase] of Rhizopus niveus-catalyzed hydrolysis of phenyl beta-maltoside, whose phenyl group does not interact so much with the subsite of the enzyme.  相似文献   

4.
Treatment of pure 2-keto-4-hydroxyglutarate aldolase from Escherichia coli, a "lysine-type," Schiff-base mechanism enzyme, with the substrate analog bromopyruvate results in a time- and concentration-dependent loss of enzymatic activity. Whereas the substrates pyruvate and 2-keto-4-hydroxyglutarate provide greater than 90% protection against inactivation by bromopyruvate, no protective effect is seen with glycolaldehyde, an analog of glyoxylate. Inactivation studies with [14C] bromopyruvate show the incorporation of 1.1 mol of 14C-labeled compound/enzyme subunit; isolation of a radioactive peptide and determination of its amino acid sequence indicate that the radioactivity is associated with glutamate 45. Incubation of the enzyme with excess [14C]bromopyruvate followed by denaturation with guanidine.HCl allow for the incorporation of carbon-14 at cysteines 159 and 180 as well. Whereas the presence of pyruvate protects Glu-45 from being esterified, it does not prevent the alkylation of these 2 cysteine residues. The results indicate that Glu-45 of E. coli 2-keto-4-hydroxyglutarate aldolase is essential for catalytic activity, most likely acting as the amphoteric proton donor/acceptor that is required as a participant in the overall mechanism of the reaction catalyzed.  相似文献   

5.
Incubation of 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-(phosphonomethyl)glycine), with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first order kinetics, with a second order rate constant of 2.2 M-1 min-1 at pH 5.5 and 25 degrees C. The inactivation is prevented by preincubation of the enzyme with a combination of the substrate shikimate 3-phosphate plus glyphosate, but not by shikimate 3-phosphate, phosphoenolpyruvate, or glyphosate alone. Increasing the concentration of glyphosate during preincubation resulted in decreasing the rate of inactivation of the enzyme. Complete inactivation of the enzyme required the modification of 4 carboxyl groups per molecule of the enzyme. However, statistical analysis of the residual activity and the extent of modification showed that among the 4 modifiable carboxyl groups, only 1 is critical for activity. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate by reverse phase chromatography resulted in the isolation of a [14C]glycine ethyl ester-containing peptide that was absent in the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. By amino acid sequencing of this labeled peptide, the modified critical carboxyl group was identified as Glu-418. The above results suggest that Glu-418 is the most accessible reactive carboxyl group under these conditions and is located at or close to the glyphosate binding site.  相似文献   

6.
Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed.  相似文献   

7.
Summary Rat kidney and spleen glucosyl-galactosyl-hydroxylysine glucosidase (EC.3.2.1.107) whose specificity for the hydroxylysine-linked disaccharide units present in collagens depends upon the substrate's free amino group was tested for its glycosidase activity on the ketoamine form of glycated [14C]Glc-Globin. The most stable preparations of the enzyme from normal and diabetic rat tissues, partially purified by ultracentrifugation and ammonium sulphate fractionation, were used. These glucosidase preparations did not release any significant amount of radioactive neutral hexose. But a radioactive glycopeptide of about 1,400 Da was released from [14C]Glc-Globin at a pH optimum of 4.0. It appears to be released by a peptidase activity present in the kidney and spleen of normal and diabetic rats.  相似文献   

8.
Human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) was affinity-labeled at pH 6.3 by 3-bromo[2'-14C]acetoxyestrone and 12 beta-bromo-[2'-14C] acetoxy-4-estrene-3,17-dione (both are substrates) in separate incubations. The affinity-alkylated enzyme samples were then treated separately as described below. Amino acid compositions of both samples revealed radioactive 3-carboxymethylhistidine. Tryptic digests of each sample were prepared, applied to Sephadex G-50, and 3-carboxymethylhistidine-bearing fractions identified. These peptides were further purified by cation exchange chromatography, gel filtration, and paper electrophoresis. The purified, 3-carboxymethylhistidine-bearing peptides labeled by the two steroids had identical electrophoretic mobilities at pH 6.5, 3.5, and 1.9. The amino acid sequence of the radioactive peptide alkylated by 3-bromo[2'-14C]acetoxyesterone was determined as: Leu-Ala-3-[14C]CmHis-Ser-Lys. The smaller quantity of peptide obtained from the inactivation with 12 beta-bromo[2'-14C]acetoxy-4-estrene-3,17-dione precluded the determination of its complete sequence. However, the first 3 residues were found to be Leu-Ala-3-[14C]CmHis and the amino acid composition showed that serine and lysine were also present. It is concluded that the steroid-binding site of human placental estradiol 17 beta-dehydrogenase contains a histidine residue which proximates the upper A-ring region of the steroid as it undergoes the reversible binding step.  相似文献   

9.
Rat brain microsomes have the capacity to liberate radioactive free aldehydes from 1-[1-14C]alk-1'-enyl-sn-glycero-3-phosphoethanolamine (lysoplasmalogen). Glycerophosphoethanolamine was found using 1-alk-1'-enyl-sn-glycero-3-phospho-[3H]ethanolamine. The ratio of both products released by lysoplasmalogenase action was 1:1. Another enzymic activity could be demonstrated, which hydrolyzes lysoplasmalogen at the hydrophilic part of the molecule, a lysophospholipid phosphodiesterase. Thus, 1-[1-14C]alk-1'-enylglycerol was detected as well as [3H]ethanolamine, again in a molar ratio, from the respective labeled substrates. This enzyme possesses nearly the same affinity toward the substrate as lysoplasmalogenase. Whereas the lysophospholipid phosphodiesterase is totally inhibited in the presence of NaF or EDTA, lysoplasmalogenase activity is not affected by these reagents. 1-[1-14C]Alk-1'-enylglycerol acts also as substrate for lysoplasmalogenase, which liberates radioactive aldehydes at the same rate as from lysoplasmalogen. Because the apparent Km and Vmax values are nearly identical for both substrates, the enzyme activities are inhibited in the same way, and the pH optimum is about 7.2 in both cases, it is concluded that both substrates were attacked by the same enzyme. The enzyme does not differentiate between a substrate substituted at the sn-3 position of glycerol and one that is not. It requires only a free OH group at the sn-2 position. Phosphoethanolamine phosphatase activity was also determined under our experimental conditions.  相似文献   

10.
ADP-ribosyltransferase in isolated nuclei from sea-urchin embryos.   总被引:3,自引:1,他引:2       下载免费PDF全文
The activity of ADP-ribosyltransferase in nuclei isolated from sea-urchin embryos was estimated by the incorporation of [adenosine-14C]NAD+ into the acid-insoluble fraction. Hydrolysis of this acid-insoluble product by snake venom phosphodiesterase yielded radioactive 5'-AMP and phosphoribosyl-AMP. The incorporation of [14C]-NAD+ was inhibited by 3-aminobenzamide and nicotinamide, potent inhibitors of ADP-ribosyltransferase. [14C]NAD+ incorporation into the acid-insoluble fraction results from the reaction of ADP-ribosyltransferase. The optimum pH for the enzyme in isolated nuclei was 7.5. The enzyme, in 50 mM-Tris/HCl buffer, pH 7.5, containing 0.5 mM-NAD+ and 0.5 mM-dithiothreitol, exhibited the highest activity at 18 degrees C in the presence of 14 mM-MgCl2. The apparent Km value for NAD+ was 25 microM. The activity of the enzyme was measured in nuclei isolated from the embryos at several stages during early development. The activity was maximum at the 16-32-cell stage and then decreased to a minimum at the mesenchyme blastula stage. Thereafter its activity slightly increased at the onset of gastrulation and decreased again at the prism stage.  相似文献   

11.
Fatty acid synthase from the uropygial gland of goose was inactivated by iodoacetamide with a second-order rate constant of 1.3 M-1 S-1 at pH 6.0 and 25 degrees C. Of the seven component activities of the synthase, only the condensation activity was significantly inhibited by iodoacetamide modification. Since preincubation of the enzyme with acetyl-CoA, but not with malonyl-CoA, protected the enzyme from inactivation by iodoacetamide, it is suggested that iodoacetamide probably modified the primer-binding thiol group at the condensation active site. Determination of the stoichiometry of modification was done using [1-14C]iodoacetamide that was purified by high-performance liquid chromatography. Graphical analysis of the data showed that binding of 1.2 carboxamidomethyl groups per subunit of fatty acid synthase would result in complete inhibition of the enzyme activity, suggesting that there is one condensation domain per subunit of fatty acid synthase. Analysis of the tryptic peptide map of the enzyme that was modified with [1-14C]iodoacetamide in the presence and absence of acetyl-CoA revealed that acetyl-CoA prevented the labeling of a major radioactive peptide and a minor radioactive peptide. These two peptides were purified by high-performance liquid chromatography. Amino acid analysis of these two peptides revealed that the major radioactive peptide contained S-carboxymethylcysteine while the minor radioactive peptide did not. However, the latter peptide contained beta-alanine, suggesting that this peptide was from the acyl carrier protein segment of fatty acid synthase and that the iodoacetamide treatment resulted in modification of the pantetheine thiol, although to a lower extent than the primer-binding thiol. The sequence of the primer-binding active site peptide from the condensation domain was H2N-Gly-Pro-Ser-Leu-Ser-Ile-Asp- Thr-Ala-Cys(carboxamidomethyl)-X-Ser-Ser-Leu-Met-Ala-Leu-Glu-Asn-A la-Tyr-Lys- COOH, the first reported sequence of the condensation active site from a vertebrate fatty acid synthase. The acyl carrier protein segment showed extensive sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the phosphopantetheine attachment, and the sequence was H2N-Asp-Val-Ser-Ser-Leu- Asn-Ala-Asp-Ser-Thr-Leu-Ala-Asp-Leu-Gly-Leu-Asp-Ser(4'-phosphopanteth ein e) -Leu-Met-Gly-Val-Glu-Val-Arg-COOH.  相似文献   

12.
The amino acid compositions of various fragments isolated from DNase treated with 2-nitro-5-thiocyanobenzoic acid (NTCB) show peptide bond cleavages to be at Thr14, Ser40, and Ser135. Isolation and characterization of radioactive tryptic and chymotryptic peptides of [14C]cyano-DNase reveal four points of peptide bond cleavage; in addition to Thr14, Ser40, and Ser135, cleavage occurs at the amino end of Ser72. Approximately 2.8 mol of [14C]cyano group are incorporated in the completely inactivated enzyme, in which 0.6 residue of Thr14, 0.8 of Ser40, and approximately 0.3 each of Ser72 and Ser135 are modified. The inactivation by NTCB can also be obtained by reacting the enzyme with a mixture of 5,5'-dithiobis(2-nitrobenzoic acid), KCN, and iodoacetate which generates NTCB. The mixture facilitates the uses of K[14C]N, which is readily incorporated into the enzyme as the [14C]cyano derivative. The reaction of NTCB with serine or threonine resembles that with cysteine.  相似文献   

13.
Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete.  相似文献   

14.
1. Purified 3-hydroxy-3-methylglutaryl-CoA synthase from baker's yeast (free from acetoacetyl-CoA thiolase activity) catalysed an exchange of acetyl moiety between 3'-dephospho-CoA and CoA. The exchange rate was comparable with the overall velocity of synthesis of 3-hydroxy-3-methylglutaryl-CoA. 2. Acetyl-CoA reacted with the synthase, giving a rapid ;burst' release of CoA proportional in amount to the quantity of enzyme present. The ;burst' of CoA was released from acetyl-CoA, propionyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA) but not from acetoacetyl-CoA, hexanoyl-CoA, dl-3-hydroxy-3-methylglutaryl-CoA, or other derivatives of glutaryl-CoA. 3. Incubation of 3-hydroxy-3-methylglutaryl-CoA synthase with [1-(14)C]acetyl-CoA yielded protein-bound acetyl groups. The K(eq.) for the acetylation was 1.2 at pH7.0 and 4 degrees C. Acetyl-labelled synthase was isolated free from [1-(14)C]acetyl-CoA by rapid gel filtration at pH6.1. The [1-(14)C]acetyl group was removed from the protein by treatment with hydroxylamine, CoA or acetoacetyl-CoA but not by acid. When CoA or acetoacetyl-CoA was present the radioactive product was [1-(14)C]acetyl-CoA or 3-hydroxy-3-methyl-[(14)C]glutaryl-CoA respectively. 4. The isolated [1-(14)C]acetyl-enzyme was slowly hydrolysed at pH6.1 and 4 degrees C with a first-order rate constant of 0.005min(-1). This rate could be stimulated either by raising the pH to 7.0 or by the addition of desulpho-CoA. 5. These properties are interpreted in terms of a mechanism in which 3-hydroxy-3-methyl-glutaryl-CoA synthase is acetylated by acetyl-CoA to give a stable acetyl-enzyme, which then condenses with acetoacetyl-CoA yielding a covalent derivative between 3-hydroxy-3-methylglutaryl-CoA and the enzyme which is then rapidly hydrolysed to free enzyme and product.  相似文献   

15.
Inactivation of the bovine heart mitochondrial F1-ATPase, taken as alpha 3 beta 3 gamma delta epsilon with a molecular weight of 375,000, with a 4-fold molar excess of 7-chloro-4-nitro[14C]benzofurazan at pH 7.5, led to the incorporation of 1.42 g atoms of 14C/mol. Treatment of the inactivated enzyme with dithiothreitol removed 0.99 g atom of 14C/mol of enzyme which was accompanied by reactivation of the ATPase. Therefore, of the 1.42 mol of 7-chloro-4-nitro-[14C]benzofurazan incorporated per mol of bovine heart mitochondrial F1-ATPase, 0.43 mol was present on lysine residues and 0.99 mol was present on tyrosine residues. When the inactivated enzyme was treated with 10 mM sodium dithionite at pH 6.0, 10% of the activity was recovered which was accompanied by a 10% loss in covalently bound 14C. Following dithionite treatment, that part of the 14C which remained covalently bound could not be removed by subsequent treatment of the labeled enzyme with dithiothreitol. It is presumed that dithionite reduces the 4-nitro group of the covalently bound reagent, converting it to 4-amino[14C]benzofurazan derivatives at lysine and tyrosine residues. The moles of 4-amino[14C]benzofurazan incorporated per mol of the isolated subunits were: alpha, 0.18; beta, 0.30; gamma, 0.03; and delta plus epsilon, less than 0.01. Gel filtration of a cyanogen bromide digest of the labeled beta subunit on Sephadex G-75 resolved a major 14C peak which contained 83% of the 14C recovered. The major, radioactive tryptic fragment derived from this peak was purified by gel filtration on Sephadex G-75 followed by reversed phase high performance liquid chromatography. Automatic Edman degradation of this peptide showed that the 14C was released at the position occupied by beta-Tyr-311.  相似文献   

16.
When the F1-ATPase from the thermophilic bacterium, PS3, was inactivated by greater than 90% with 7-chloro-4-nitro[14C]benzofurazan ([14C]Nbf-Cl) at pH 7.4, 1.4 mol of [14C]Nbf were incorporated per mol of enzyme. After pepsin digestion of the labeled enzyme at pH 3.0, a single, major peak of radioactivity was resolved by reversed-phase high-performance liquid chromatography under acidic conditions were peptidyl Nbf-O-tyrosine is stable. This radioactive peak, designated RP-1, eluted with a retention time of 95 min. When the material in RP-1 was subjected to reversed-phase high-performance liquid chromatography under the same conditions after treatment with sodium dithionite, a single, major peak of radioactivity, designated RP-2, was resolved with a retention time of 52 min. Automatic Edman degradation of this material revealed that it has the amino acid sequence I-Y*-V-P-A-D-(D), where Y* presumably represents peptidyl [14C]Nbf-O-tyrosine. These results provide the basis for a facile method to purify peptides containing [14C]Nbf-O-tyrosine in which the labeled residues can be identified by amino acid sequence analysis using the Edman degradation.  相似文献   

17.
E A Havir  K R Hanson 《Biochemistry》1975,14(8):1620-1626
Highly purified enzyme (EC 4.1.3.5) from Rhodotorula glutinis was shown by sodium dodecyl sulfate gel electrophoresis to have subunits which if not identical are closely similar in molecular weight. Like the enzyme from maize and potato [Havir, E. A., and Hanson, K. R. (1973), Biochemistry 12, 1583] it is a tetramer of molecular weight similar to 4 times 83,000. Enzyme from all three sources inactivated and labeled at the active site with 14-CH3NO2 gave on HCl hydrolysis 14-CO2, H-14-CO2H, D- and L-[14-C]aspartic acid, and unidentified radioactive products. In addition, the labeled R. glutinis enzyme gave [1,2-14-C2]glycine. The formation of the first three products is compatible with the hypothesis that the electrophilic prosthetic group of the enzyme contains the dehydroalanine imine system greater than C equals to N minus C-alpha(equals to C-beta-H2)COminus and inactivation involves attack on C-beta. The second-order rate constants for CH3NO2 inactivation varied with pH as a simple titration curve. The pKa values calculated from the curves for the three enzymes differed and were lower than the pKa of CH3NO2 by at least 1 pH unit. Apparently the inactivation process is enzyme catalyzed. Both inactivation and addition of the substrate amino group may occur with attack on C-beta.  相似文献   

18.
4-(3-Bromoacetylpyridinio)butyldiphosphoadenosine was synthesized with a [carbonyl-14C]acetyl label. The reactive coenzyme analogue inactivates alcohol dehydrogenase from Bacillus stearothermophilus by forming a covalent enzyme-coenzyme compound. The inactivation kinetics as well as the spectral properties of the modified enzyme after treatment with sodium hyposulphite suggest that the analogue is bound at the coenzyme binding site. B. stearothermophilus alcohol dehydrogenase modified with 14C-labelled coenzyme analogue and subseqeuntly carboxymethylated with unlabelled iodoacetic acid was digested with trypsin. The radioactive peptide was isolated and sequenced in parallel with the corresponding peptide similarly isolated from unmodified enzyme that had instead been carboxymethylated with iodo[14C]acetic acid. Amino acid and sequence analysis show that Cys-38 of the B. stearothermophilus alcohol dehydrogenase was modified by the reactive coenzyme analogue. This residue is homologous to Cys-43 in yeast alcohol dehydrogenase and Cys-46 in the horse liver enzyme but, unlike the latter two, Cys-38 is not reactive towards iodoacetate in the native bacterial enzyme.  相似文献   

19.
Pteroylpolyglutamate hydrolase was solubilized with Triton X-100 from human jejunal mucosal brush borders and purified approximately 5,000-fold using organomercurial affinity chromatography, DEAE-cellulose chromatography, and gel filtration. The apparent molecular weight of the purified enzyme in the Triton micelle was estimated as 700,000 using Bio-Gel A-1.5m gel filtration. Sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis followed by Coomassie stain demonstrated two polypeptide bands at 145,000 and 115,000 daltons. The purified enzyme had an isoelectric point of 7.2, was maximally active at pH 5.5, and was stable above pH 6.5 and at temperatures up to 65 degrees C for at least 90 min. Human jejunal brush-border pteroylpolyglutamate hydrolase is an exopeptidase which liberated [14C]Glu as the sole labeled product of PteGlu2[14C]Glue (where PteGlun represents pteroylpolyglutamate), failed to liberate a radioactive product from PteGlu2[14C]GluLeu2, and released all possible labeled PteGlun products during incubation with Pte[14C]GluGlu6 with the accumulation of Pte[14C]Glu. PteGlu2, PteGlu3, and PteGlu7 were substrates, each with Km = 0.6 microM, whereas PteGlu was a weak inhibitor of the hydrolysis of PteGlu3 with Ki = 20 microM. Components of the pteroyl moiety, Glu, and short chain Glun in alpha or gamma linkages were not inhibitory. The enzyme was activated by Zn2+ or Co2+. The properties of brush-border pteroylpolyglutamate hydrolase are different from those described for the soluble intracellular pteroylpolyglutamate hydrolase in other species and in human mucosa, yet are consistent with previous data on the process of hydrolysis of PteGlun in the intact human intestine.  相似文献   

20.
When the F1-ATPase from the thermophilic bacterium, PS3, was inactivated by 90% with 7-chloro-4-nitro[14C]benzofurazan ([14C]Nbf-Cl) at pH 7.3 and then gel-filtered, 1.25 mols of [14C]Nbf-O-Tyr and less than 0.1 mol of Nbf-N-Lys were formed per mol of enzyme. After adjusting the pH of the gel-filtered, modified enzyme to 9.0 and incubating it for 14 hrs. at 23 degrees C to promote O----N migration, 0.68 mol of Nbf-N-Lys were formed per mol of enzyme while about 16% of the original activity reappeared. Isolation of the subunits after the O----N migration showed that 90% of the incorporated 14C was present in the beta subunit, which contained 0.21 mols of [14C]Nbf-N-Lys per mol. A tryptic peptide which contained the majority of the 14C incorporated into the beta subunit was isolated and subjected to automatic amino acid sequence analysis contained 38 residues. The amino acid sequence immediately around the lysine residue labeled with [14C]Nbf-, K*, was found to be: ...I-G-L-F-G-G-A-G-V-G-K*-T-V-L-I-G... .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号