首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cholesterol sulphate is a potent stabilizer of membrane bilayer structure in both dielaidoylphosphatidylethanolamine and egg phosphatidylethanolamine model membranes, however, the addition of calcium abolishes this bilayer stabilization. Calcium also induces fusion and leakage of egg phosphatidylethanolamine large unilamellar vesicles containing cholesterol sulphate, but has no effect on fusion or leakage of egg phosphatidylcholine large unilamellar vesicles containing cholesterol sulphate. With egg phosphatidylethanoiamine liposomes, the initial rate, and extent of fusion, at constant calcium concentration, vary inversely with the mol percentage of cholesterol sulphate present in the vesicle membrane. The interaction of calcium and cholesterol sulphate, which causes membrane destabilization and fusion in phosphatidylethanolamine containing model systems, may play a role in the acrosome reaction in human sperm.  相似文献   

2.
Transbilayer distribution of sterols in mycoplasma membranes: a review   总被引:2,自引:0,他引:2  
The polyene antibiotic, filipin, binds to 3 beta-hydroxysterols. The initial rate of filipin-sterol association, monitored in a stopped-flow spectrophotometer, was first order in each reacting partner. The ratio of rate constants in intact mycoplasma cells relative to isolated, unsealed membranes provides an estimate of sterol distribution in the membrane bilayer. Cholesterol is distributed symmetrically in the bilayer of M. gallisepticum cells from the early exponential phase. However, in the M. capricolum membrane two-thirds of the unesterified cholesterol is localized in the outer leaflet; alkyl-sterols are distributed predominantly in the external monolayer. Cholesterol is translocated rapidly in the bilayer of M. capricolum cells. Exogenous phospholipids incorporated into the membrane had no effect on the cholesterol distribution in M. capricolum.  相似文献   

3.
R M Epand  R Bottega 《Biochemistry》1987,26(7):1820-1825
Cholesterol lowers the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines up to a mole fraction of about 0.1. At cholesterol mole fractions above about 0.3, the effect of this sterol is to stabilize the bilayer phase. The relatively weak effects of cholesterol in altering the bilayer to hexagonal phase transition temperature can be explained on the basis of lateral phase separation. This is indicated by the horizontal liquidus line for the gel to liquid-crystalline transition in the phase diagram for mixtures of cholesterol with dielaidoylphosphatidylethanolamine (DEPE) as well as the fact that cholesterol does not greatly decrease the cooperativity of the bilayer to hexagonal phase transition. The enthalpy of this latter transition increased with increasing mole fractions of cholesterol. Two oxidation products of cholesterol are 5-cholesten-3 beta,7 alpha-diol and cholestan-3 beta,5 alpha,6 beta-triol. Compared with cholesterol, 5-cholesten-3 beta,7 alpha-diol had a greater effect in decreasing the bilayer to hexagonal phase transition temperature and broadening this transition. It is suggested that its effectiveness is due to its greater solubility in the DEPE. In contrast, cholestan-3 beta,5 alpha,6 beta-triol raises the bilayer to hexagonal phase transition temperature of DEPE. This is due to its larger and more hydrophilic head group. In addition, its length, being shorter than that of DEPE, would not allow it to pack efficiently in a hexagonal phase arrangement.We suggest that this same effect is responsible for cholesterol raising the bilayer to hexagonal phase transition temperature at higher mole fractions.  相似文献   

4.
Cholesterol has been shown to regulate the activity of several membrane proteins. Although this phenomenon represents an important factor in the regulation of ion homeostasis, insights are needed to fully understand the role of this lipid in cell function in order to better comprehend the effect of bilayer components upon membrane function. Since evolution has shaped the composition of the membrane bilayer, it becomes of interest to study these changes in parallel with the many functions of membranes such as ion transport. The present study employing a plasma membrane preparation obtained from calf ventricular muscle demonstrates that cholesterol partially inhibits the Ca(2+),Mg(2+)-ATPase as the catalytic function of the calcium pump, when incubation reaction temperatures are below 42 degrees C. In contrast, when incubation reaction temperatures are above 42 degrees C, cholesterol apparently promotes enzyme stabilization reflected in higher activity. Although the activation energy values for the enzyme are almost the same at ranges between 15 and 40 degrees C, the use of elevated temperatures promote higher enzyme inactivation rates in control than in cholesterol enriched membranes. Cholesterol apparently is promoting stabilization that in turn protects the enzyme against thermal inactivation. This protective effect is reflected in a decrease of inactivation rate values and energy released during enzyme catalysis. The modification of many membrane properties throughout million of years made it possible for new evolutionary driving forces to show themselves as new characteristics in eukaryotes such as the one discussed in this study, dealing with the presence of cholesterol in the cell membrane directly associated to the promotion of protein thermostability.  相似文献   

5.
The membrane composition modulates membrane fusion by altering membrane physical properties and the structure, organization and dynamics of fusion proteins and peptides. The journey of developing peptide-based viral fusion inhibitors is often stalled by the change in lipid composition of viral and target membranes. This makes it important to study the role of membrane composition on the organization, dynamics and fusion inhibiting abilities of the peptide-based fusion inhibitors. Cholesterol, an important constituent of mammalian cell membrane, modulates bilayer properties in multiple ways and impart its effect on the membrane fusion. We have previously shown that TG-23 peptide derived from phagosomal coat protein, coronin 1, shows significant inhibition of fusion between membranes without cholesterol. In this work, we have studied the effect of the TG-23 peptide on the polyethylene glycol-mediated membrane fusion in presence of different concentrations of membrane cholesterol. Our results show that the inhibitory effect of TG-23 is being completely reversed in cholesterol containing membranes. We have evaluated the structure, organization, dynamics and depth of penetration of TG-23 in membranes having different lipid compositions and its effect on membrane properties. Our results demonstrate that cholesterol does not affect the secondary structure of the peptide, however, alters the depth of penetration of the peptide and modifies peptide organization and dynamics. The cholesterol dependent change in organization and dynamics of the peptide influences its efficacy in membrane fusion. Therefore, we envisage that the study of peptide organization and dynamics is extremely important to determine the effect of peptide on the membrane fusion.  相似文献   

6.
A number of carbobenzoxy-dipeptide-amides raise the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine (stabilizes the bilayer). The potency of the peptides in stabilizing the bilayer phase is Z-Tyr-Leu-NH2= Z-Gly-Phe-NH2>Z-Ser-Leu-NH2>Z-Gly-Leu-NH2>Z-Gly-Gly-NH2. A linear correlation was found between the respective HPLC retention time parameterk for the peptide and the slope of the bilayer stabilization curve determined with model membranes by differential scanning calorimetry. One dipeptide, Z-Ser-Leu-NH2, reduces measles virus cytopathic effect (CPE) in Vero cells. The mechanism by which this peptide reduces the CPE is not known, although some peptides which raise the bilayer to hexagonal phase transition temperature of phospholipids inhibit membrane fusion.Abbreviations Z carbobenzoxy - DEPE dielaidoylphosphatidylethanolamine - DSC differential scanning calorimetry - HPLC high pressure liquid chromatography - CPE cytopathic effect To whom correspondence should be addressed.  相似文献   

7.
Cyclosporin A, benzyloxycarbonyl-D-Phe-L-Phe-Gly, and amantadine inhibit the dilution of fluorescently labeled lipids, as measured with the resonance energy exchange assay for membrane fusion. The fusion was studied using sonicated vesicles containing 1,2-dioleoyl-sn-glycero(3)phosphoethanolamine, egg (3-sn-phosphatidyl)choline, and cholesterol in a 1:1:1.3 molar ratio. All three antiviral agents inhibited myelin basic protein-induced membrane fusion when present at low concentrations in the membrane. The mechanism by which these agents affect membrane properties was investigated. The effect of these agents on the bilayer to hexagonal phase transition of 1,2-dielaidoyl-sn-glycero(3)phosphoethanolamine was determined using both differential scanning calorimetry and 31P NMR. Benzyloxycarbonyl-D-Phe-L-Phe-Gly is particularly effective in raising the bilayer to hexagonal phase transition temperature while cyclosporin promotes the greatest amount of broadening of the 31P NMR signal. Both effects are suggested to be related to the inhibitory activity of these substances on membrane fusion and possibly also to their antiviral activity.  相似文献   

8.
Virus replication inhibitory peptide (carbobenzoxy-D-Phe-L-PheGly) was shown to be a potent specific inhibitor of the replication of paramyxovirus and myxovirus (Richardson, Scheid and Choppin (1980), Virology105, 205–222). This peptide inhibits the membrane fusing activity of a viral glycoprotein.Many agents which promote the formation of the hexagonal phase in membranes also accelerate membrane fusion. At a mole fraction of 0.1, viral replication inhibitory peptide can raise the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine by almost 10°. Two related peptides, carbobenzoxy-L-PheGly and carbobenzoxy-L-GlyPhe, are less potent in raising the bilayer to hexagonal phase transition temperature, with the latter peptide being the least effective of the three. This order of potency is the same as the order of potency in inhibiting viral replication. Substances which inhibit hexagonal phase formation of pure lipids may also inhibit membrane fusion.Abbreviations DEPE dielaidoylphosphatidyethanolamine - Z carbobenzoxy - DSC differential scanning calorimetry - VRIP virus replication inhibitory peptide (Z-D-Phe-L-PheGly)  相似文献   

9.
Lipid regulation of cell membrane structure and function   总被引:11,自引:0,他引:11  
P L Yeagle 《FASEB journal》1989,3(7):1833-1842
Recent studies of structure-function relationships in biological membranes have revealed fundamental concepts concerning the regulation of cellular membrane function by membrane lipids. Considerable progress has been made in understanding the roles played by two membrane lipids: cholesterol and phosphatidyl-ethanolamine. Cholesterol has been shown to regulate ion pumps, which in some cases show an absolute dependence on cholesterol for activity. These studies suggest that an essential role that cholesterol plays in mammalian cell biology is to enable crucial membrane enzymes to provide function necessary for cell survival. Studies of phosphatidylethanolamine regulation of membrane protein activity and regulation of membrane morphology led to hypotheses concerning the roles for this particular lipid in biological membranes. New information on lipid-protein interactions and on the nature of the lipid head groups has permitted the development of mechanistic hypotheses for the regulation of membrane protein activity by phosphatidyl-ethanolamine. In addition, intermediates in the lamellar-nonlamellar phase transitions of membrane systems containing phosphatidylethanolamine, or other lipids with similar properties, have recently been implicated in facilitating membrane fusion. Finally, studies of transmembrane movement of lipids have provided new insight into the regulation of membrane lipid asymmetry and the biogenesis of cell membranes. These kinds of studies are harbingers of a new generation of progress in the field of cell membranes.  相似文献   

10.
The translocation of lipids across membranes (flip-flop) is an important biological process. Slow exchange on a physiological timescale allows the creation of asymmetric distributions of lipids across cellular membranes. The location of lipids and their rate of exchange have important biological consequences, especially for lipids involved in cellular signaling. We investigated the translocation of cholesterol, ceramide, and diacylglycerol in two model bilayers using molecular dynamics simulations. We estimate half times for flip-flop for cholesterol, diacylglycerol, and ceramide of 20 μs, 30 μs, and 10 ms in a POPC bilayer, compared with approximately 30 min, 30 ms, and 30 s in a model raft bilayer (1:1:1 PSM, POPC, and cholesterol). Cholesterol has a large (54 kJ/mol) free energy of exchange between the POPC and raft bilayer, and therefore, it strongly prefers the more ordered and rigid raft bilayer over the more liquid POPC bilayer. Ceramide and diacylglycerol have relatively small free energies of exchange, suggesting nearly equal preference for both bilayers. This unexpected result may have implications for ceramide and diacylglycerol signaling and membrane localization.  相似文献   

11.
There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the accumulation of beta-amyloid peptides into senile plaques, one of the hallmarks of Alzheimer's disease (AD). With the aim to clarify the molecular basis of the interaction between amyloid peptides and cellular membranes, we investigated the interaction between a cytotoxic fragment of Abeta(1-42), i.e., Abeta(25-35), and phospholipid bilayer membranes. These systems were studied by Electron Paramagnetic Resonance (EPR) spectroscopy, using phospholipids spin-labeled on the acyl chain. The effect of inclusion of charged phospholipids or/and cholesterol in the bilayer composition was considered in relation to the peptide/membrane interaction. The results show that Abeta(25-35) inserts in bilayers formed by the zwitterionic phospholipid dilauroyl phosphatidylcholine (DLPC), positioning between the outer part of the hydrophobic core and the external hydrophilic layer. This process is not significantly influenced by the inclusion of the anionic phospholipid phosphatidylglycerol (DLPG) in the bilayer, indicating the peptide insertion to be driven by hydrophobic rather than electrostatic interactions. Cholesterol plays a fundamental role in regulating the peptide/membrane association, inducing a membrane transition from a fluid-disordered to a fluid-ordered phase. At low cholesterol content, in the fluid-disordered phase, the insertion of the peptide in the membrane causes a displacement of cholesterol towards the more external part of the membrane. The crowding of cholesterol enhances its rigidifying effect on this region of the bilayer. Finally, the cholesterol-rich fluid-ordered membrane looses the ability to include Abeta(25-35).  相似文献   

12.
We review evidence that sterols can form stoichiometric complexes with certain bilayer phospholipids, and sphingomyelin in particular. These complexes appear to be the basis for the formation of condensed and ordered liquid phases, (micro)domains and/or rafts in both artificial and biological membranes. The sterol content of a membrane can exceed the complexing capacity of its phospholipids. The excess, uncomplexed membrane sterol molecules have a relatively high escape tendency, also referred to as fugacity or chemical activity (and, here, simply activity). Cholesterol is also activated when certain membrane intercalating amphipaths displace it from the phospholipid complexes. Active cholesterol projects from the bilayer and is therefore highly susceptible to attack by cholesterol oxidase. Similarly, active cholesterol rapidly exits the plasma membrane to extracellular acceptors such as cyclodextrin and high-density lipoproteins. For the same reason, the pool of cholesterol in the ER (endoplasmic reticulum) increases sharply when cell surface cholesterol is incremented above the physiological set-point; i.e., equivalence with the complexing phospholipids. As a result, the escape tendency of the excess cholesterol not only returns the plasma membrane bilayer to its set-point but also serves as a feedback signal to intracellular homeostatic elements to down-regulate cholesterol accretion.  相似文献   

13.
Cholesterol was found to inhibit full fusion of oppositely charged phospholipid bilayer vesicles by stabilizing the contacting membranes at the stage of the hemifused intermediate. Vesicles of opposite charge containing different amounts of cholesterol were prepared using cationic (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine) and anionic (dioleoylphosphatidylglycerol) phospholipids. Pairwise interactions between such vesicles were observed by fluorescence video microscopy in real time after electrophoretically maneuvering the vesicles into contact. Hemifusion accounted for more than 80% of the observed events when the vesicles contained 33-50 mole% cholesterol. In contrast, vesicles containing only a small proportion of cholesterol (相似文献   

14.
Massey JB  Pownall HJ 《Biochemistry》2005,44(30):10423-10433
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.  相似文献   

15.
M Z Lai  W J Vail  F C Szoka 《Biochemistry》1985,24(7):1654-1661
The membrane stabilization effect of cholesteryl hemisuccinate (CHEMS) and the sensitivity of the CHEMS-phosphatidylethanolamine membranes to protons and calcium ions were studied by differential scanning calorimetry, freeze-fracture electron microscopy, and 31P NMR. (1) At neutral pH, the addition of 8 mol % CHEMS to transesterified egg phosphatidylethanolamine (TPE) raised the lamellar-hexagonal transition temperature of TPE by 11 degrees C. Stable bilayer vesicles were formed when the incorporated CHEMS exceeded 20 mol %. (2) At a pH below 5.5, the protonation of CHEMS enhanced the formation of the hexagonal phase (HII) of TPE. At 25 mol % CHEMS the bilayer-hexagonal transition temperature was lowered by 30 degrees C at pH 4.5. (3) The endothermic acid-induced hexagonal hexagonal transition of TPE-CHEMS was suppressed at 35 mol % CHEMS. However, 31P NMR and electron microscopy indicated that a lamellar-hexagonal transition still occurred at this composition. (4) The main transition of TPE was not affected by the protonation of the incorporated CHEMS, indicating that no macroscopic phase separation occurred in TPE-CHEMS mixtures at low pH. (5) In contrast to the HII-promoting effect of H+, the neutralization of the negative charge on TPE-CHEMS by Ca2+ resulted in aggregates that remained in the lamellar structure even at the hexagonal transition temperature of TPE. It is suggested that calcium might form a complex between CHEMS in apposed bilayers. These results are related to the possible biological function of acidic cholesterol esters in biomembranes.  相似文献   

16.
Cholesterol Reporter Molecules   总被引:2,自引:0,他引:2  
Cholesterol is a major constituent of the membranes in most eukaryotic cells where it fulfills multiple functions. Cholesterol regulates the physical state of the phospholipid bilayer, affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Cholesterol plays a crucial role in the formation of membrane microdomains such as "lipid rafts" and caveolae. However, our current understanding on the membrane organization, intracellular distribution and trafficking of cholesterol is rather poor. This is mainly due to inherent difficulties to label and track this small lipid. In this review, we describe different approaches to detect cholesterol in vitro and in vivo. Cholesterol reporter molecules can be classified in two groups: cholesterol binding molecules and cholesterol analogues. The enzyme cholesterol oxidase is used for the determination of cholesterol in serum and food. Susceptibility to cholesterol oxidase can provide information about localization, transfer kinetics, or transbilayer distribution of cholesterol in membranes and cells. The polyene filipin forms a fluorescent complex with cholesterol and is commonly used to visualize the cellular distribution of free cholesterol. Perfringolysin O, a cholesterol binding cytolysin, selectively recognizes cholesterol-rich structures. Photoreactive cholesterol probes are appropriate tools to analyze or to identify cholesterol binding proteins. Among the fluorescent cholesterol analogues one can distinguish probes with intrinsic fluorescence (e.g., dehydroergosterol) from those possessing an attached fluorophore group. We summarize and critically discuss the features of the different cholesterol reporter molecules with a special focus on recent imaging approaches.  相似文献   

17.
Cationic amphiphiles used for transfection can be incorporated into biological membranes. By differential scanning calorimetry (DSC), cholesterol solubilization in phospholipid membranes, in the absence and presence of cationic amphiphiles, was determined. Two different systems were studied: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)+cholesterol (1:3, POPC:Chol, molar ratio) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS)+cholesterol (3:2, POPS:Chol, molar ratio), which contain cholesterol in crystallite form. For the zwitterionic lipid POPC, cationic amphiphiles were tested, up to 7 mol%, while for anionic POPS bilayers, which possibly incorporate more positive amphiphiles, the fractions used were higher, up to 23 mol%. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and DOTAP in methyl sulfate salt form (DOTAPmss) were found to cause a small decrease on the enthalpy of the cholesterol transition of pure cholesterol aggregates, possibly indicating a slight increase on the cholesterol solubilization in POPC vesicles. With the anionic system POPS:Chol, the cationic amphiphiles dramatically change the cholesterol crystal thermal transition, indicating significant changes in the cholesterol aggregates. For structural studies, phospholipids spin labeled at the 5th or 16th carbon atoms were incorporated. In POPC, at the bilayer core, the cationic amphiphiles significantly increase the bilayer packing, decreasing the membrane polarity, with the cholesterol derivative 3 beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholesterol (DC-chol) displaying a stronger effect. In POPS and POPS:Chol, DC-chol was also found to considerably increase the bilayer packing. Hence, exogenous cationic amphiphiles used to deliver nucleic acids to cells can change the bilayer packing of biological membranes and alter the structure of cholesterol crystals, which are believed to be the precursors to atherosclerotic lesions.  相似文献   

18.
The most unique feature of the eye lens fiber-cell plasma membrane is its extremely high cholesterol content. Cholesterol saturates the bulk phospholipid bilayer and induces formation of immiscible cholesterol bilayer domains (CBDs) within the membrane. Our results (based on EPR spin-labeling experiments with lens-lipid membranes), along with a literature search, have allowed us to identify the significant functions of cholesterol specific to the fiber-cell plasma membrane, which are manifest through cholesterol–membrane interactions. The crucial role is played by the CBD. The presence of the CBD ensures that the surrounding phospholipid bilayer is saturated with cholesterol. The saturating cholesterol content in fiber-cell membranes keeps the bulk physical properties of lens-lipid membranes consistent and independent of changes in phospholipid composition. Thus, the CBD helps to maintain lens-membrane homeostasis when the membrane phospholipid composition changes significantly. The CBD raises the barrier for oxygen transport across the fiber-cell membrane, which should help to maintain a low oxygen concentration in the lens interior. It is hypothesized that the appearance of the CBD in the fiber-cell membrane is controlled by the phospholipid composition of the membrane. Saturation with cholesterol smoothes the phospholipid-bilayer surface, which should decrease light scattering and help to maintain lens transparency. Other functions of cholesterol include formation of hydrophobic and rigidity barriers across the bulk phospholipid-cholesterol domain and formation of hydrophobic channels in the central region of the membrane for transport of small, nonpolar molecules parallel to the membrane surface. In this review, we provide data supporting these hypotheses.  相似文献   

19.
Effect of cholesterol, divalent ions and pH on spherical bilayer membrane fusion was studied as a function of increasing temperature. Spherical bilayer membranes were composed of natural [phosphatidylcholine (PC) and phosphatidylserine (PS)] as well as synthetic (dipalmitoyl-PC, dimyristoyl-PC and dioleoyl-PC) phospholipids. Incorporation of cholesterol into the membrane (33% by weight) suppressed the fusion temperature and also greatly reduced the percentage of membrane fusion. The presence of 1 mM divalent ions (Ca++, Mg++ or Mn++) on both sides or one side of the PC membrane did not affect appreciably its fusion characteristic with temperature, but the PS membrane fusion with temperature was greatly enhanced by the presence of divalent ions. The variation of pH of the environmental solution in the range of 5.5 approximately 7.0 did not affect the membrane fusion characteristic. However, at pH 8.5, the fusion with respect to temperature was shifted toward the lower temperature by approximately 3degreesC for PC and PS membranes, and at pH 3.0 the opposite situation was observed as the fusion temperature was increased by 6degreesC for PS membranes and by 4degreesC for PC membranes The results seem to indicate that membrane fluidity and structural instability in the bilayer are important for membrane fusion to occur.  相似文献   

20.
Partition coefficients, kp, of chlorpromazine between the aqueous phase and lipid bilayer vesicles were determined as function of drug concentration, lipid chain length, cholesterol content and temperature encompassing the range of the lipid phase transition. Radioactivity and absorption measurements were performed to determine the kp values. Up to a concentration of 3 . 10(-5) M, the partition coefficient is independent of chlorpromazine concentration, whereas it decreases drastically at higher chlorpromazine concentrations, at which membrane lysis is observed. Membrane structure is not disturbed at less than 3 . 10(-5) M chlorpromazine, as was concluded from electron paramagnetic resonance studies measuring TEMPO partitioning and order degree. However, the lipid phase-transition temperature decreases and is broadened at higher chlorpromazine concentrations. From fluorescence measurements, we conclude the formation of chlorpromazine micelles at concentrations higher than 5 . 10(-5) M in chlorpromazine in the absence of lipids and the formation of mixed micelles in the presence of lipids. The effect of lipid chain length on kp values was investigated. The partition coefficient decreases from 8100 in dilauroyl- to 3400 in dipalmitoylphosphatidylcholine vesicles, both at 50 degrees C, that is, above their corresponding phase-transition temperature tt. At t less than tt the kp values are strongly reduced, by at least a factor of 10, depending on lipid chain length and membrane composition. It is possible to establish a lipid phase-transition curve from the temperature-dependent measurements of the kp values. Cholesterol within the lipid membrane strongly decreases kp. At 20 mol% cholesterol in dipalmitoylphosphatidylcholine membranes, the partition coefficient is reduced from 3400 to 2300. This value is well comparable to the kp value obtained in erythrocyte ghosts. In contradiction to earlier experiments by Conrad and Singer (Biochemistry 20 (1981) 808-818), this value in a biological membrane could be obtained by the hygroscopic desorption as well as the centrifugation method. From our experiments we are justified in further considering artificial bilayer membranes as models for biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号