首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of MgCl2, amounts of detergents which disrupted phospholipid vesicles caused lipopolysaccharide I from Proteus mirabilis to aggregate and form vesicular, membrane-like structures. Vesicle formation with P. mirabilis lipopolysaccharide II containing longer O-polysaccharide chains was extremely poor. Lipopolysaccharides of Salmonella minnesota R mutants (chemotypes Ra, Rc and Re) displayed a growing tendency for vesicle formation with increasing deficiency of the R core polysaccharide. Lipopolysaccharides of chemotypes Rc and Re produced vesicles even in the absence of MgCl2 and detergent. Spherical aggregates consisting of P. mirabilis lipopolysaccharide I, MgCl2 and detergent were unable to either entrap or retain [14C]-sucrose, [3H]inulin or [3H]dextran. On the other hand, S. minnesota R mutant lipopolysaccharides of chemotypes Rc and Re could entrap all three saccharides and retain them for at least short periods of time. Leakage of [3H]-inulin out of Re-lipopolysaccharide vesicles was greatly retarded by addition of MgCl2 to the vesicle system. Incorporation of P. mirabilis lipopolysaccharide I or S. minnesota Rc lipopolysaccharide into phospholipid vesicles protected these model membranes from disruption by detergent. This suggested a similar protective function of lipopolysaccharide in the outer membrane of enteric bacteria against the action of surfactants occuring in their normal intestinal habitat.  相似文献   

2.
In the paper, we propose a method for estimation of the mean molecular weight of lipopolysaccharide, which is important for accuracy of endotoxin activity investigation. In our study, it was assumed that lipid A portion in Enterobacterial lipopolysaccharide is substituted by four 3-hydroxytetradecanoic acid residues. Lipopolysaccharides of S, Ra, Rc and Re chemotypes being laboratory preparations as well as purchased from Sigma were investigated. Fatty acids were determined by of gas chromatography as methyl esters according to the procedure described by Wollenweber and Rietschel. Mean molecular weight was calculated by the formula: MMW = [formula: see text]. A high agreement between the estimated and the theoretical molecular weight values was demonstrated in the case of Salmonella minnesota R595 (Re) LPS preparation. As expected, LPS heterogeneity increase together with enlargement of polysaccharide chain length which is visible in electrophoregrams also. Except for LPS mean molecular weight estimation, the method allows its detection in various preparations and samples, distinguishing of R and S LPS forms as well as the determination of mean length of O-specific chain in lipopolysaccharides which structures are known.  相似文献   

3.
Envelope proteins of one smooth (S) strain and seven rough (R) mutants of Salmonella minnesota were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. All strains gave similar band patterns although some consistent differences were detected. A major polypeptide band at 54k, which coincided with the flagellar component, was more prominent in S, Ra and Rb than in the Rc, Rd and Re chemotypes. The latter strains, however, showed more prominent bands at 48, 19 and 18k. The stage of growth at which the cultures were harvested was also found to affect the band patterns, particularly in the 54 and 40k regions. A closer examination of S, Ra and Re strains suggested that the levels of the major 40 and 37k bands were slightly reduced in Re. It is concluded that the progressive loss of lipopolysaccharide components which occurs from the S chemotype through various degrees of roughness to Re is accompanied by a change in the envelope protein composition, apparently between Rb and Rc.  相似文献   

4.
In the present paper laser desorption mass spectrometry (LDMS) was applied to dephosphorylated free lipid A preparations obtained from lipopolysaccharides of Re mutants of Salmonella minnesota, Escherichia coli and Proteus mirabilis. The purpose of this study was to elucidate the location of (R)-3-hydroxytetradecanoic acid and 3-O-acylated (R)-3-hydroxytetradecanoic acid residues which are bound to amino and hydroxyl groups of the glucosamine disaccharide backbone of lipid A. Based on the previous finding from biochemical analyses that the amino group of the nonreducing glucosamine residue (GlcN II) of the backbone carries, in S. minnesota and E. coli, 3-dodecanoyloxytetradecanoic acid and, in P. mirabilis, 3-tetradecanoyloxytetradecanoic acid, a self-consistent interpretation of the LDMS was possible. It was found that: (a) in all three lipids A GlcN II is, besides the amide-linked 3-acyloxyacyl residue, substituted by ester-linked 3-tetradecanoyloxytetradecanoic acid; (b) the reducing glucosamine (GlcN I) is substituted by ester-linked 3-hydroxytetradecanoic acid; (c) the amino group of GlcN I carries a 3-hydroxytetradecanoic acid which is non-acylated in E. coli and which is partially acylated by hexadecanoic acid in S. minnesota and P. mirabilis. In lipids A which were obtained from the P. mirabilis Re mutant grown at low temperature (12 degrees C) LDMS analysis revealed that specifically the one fatty acid bound to the 3-hydroxyl group of amide-linked 3-hydroxytetra-decanoic acid at GlcN II is positionally replaced by delta 9-hexadecenoic acid (palmitoleic acid). It appears, therefore, that enterobacterial lipids A resemble each other in that the 3-hydroxyl groups of the two 3-hydroxytetradecanoic acid residues linked to GlcN II are fully acylated, while those of the two 3-hydroxytetradecanoic acid groups attached to GlcN I are free or only partially substituted.  相似文献   

5.
Purified human placental insulin receptors were incorporated into small unilamellar phospholipid vesicles by the addition of n-octyl beta-glucopyranoside solubilized phospholipids, followed by removal of the detergent on a Sephadex G-50 gel filtration column and extensive dialysis. The vesicles have an average diameter of 142 +/- 24 nm by Sephacryl S-1000 gel filtration chromatography and 119 +/- 20 nm by transmission electron microscopy. These vesicles are impermeant to small molecules as indicated by their ability to retain [gamma-32P]ATP, which could be released by the addition of 0.05% Triton X-100. Detergent permeabilization or freeze-thawing of the insulin receptor containing vesicles in the presence of 125I-insulin indicated that approximately 75% of the insulin binding sites were oriented right side out (extravesicularly). Sucrose gradient centrifugation of insulin receptors incorporated at various protein to phospholipid mole ratios demonstrated that the insulin receptors were inserted into the phospholipid bilayer structure in a concentration-dependent manner. Addition of [gamma-32P]ATP to the insulin receptor containing vesicles was relatively ineffective in promoting the autophosphorylation of the beta subunit in the absence or presence of insulin. Permeabilization of the vesicles with low detergent concentrations, however, stimulated the beta-subunit autophosphorylation approximately 2-fold in the absence and 10-fold in the presence of insulin. Insulin-stimulated beta-subunit autophosphorylation was also observed under conditions such that 94% of those vesicles containing insulin receptors had a single receptor per vesicle, suggesting that the initial beta-subunit autophosphorylating activity is intramolecular. Phospho amino acid analysis of the vesicle-incorporated insulin receptors demonstrated that the basal and insulin-stimulated beta-subunit autophosphorylation occurs exclusively on tyrosine residues. It is concluded that when purified insulin receptors are incorporated into a phospholipid bilayer, they insert into the vesicles primarily in the same orientation as occurs in the plasma membrane of intact cells and retain insulin binding as well as insulin-stimulated beta-subunit autophosphorylating activities.  相似文献   

6.
beta-adrenergic receptors were solubilized from rat erythrocyte plasma membranes using digitonin. Solubilized receptors were then reconstituted into phospholipid vesicles by the addition of dimyristoylphosphatidylcholine and removal of detergent. Vesicles were separated from residual soluble receptors and detergent by rate-zonal ultracentrifugation. Vesicles were monolamellar, 500-900 A in diameter, and had a lipid content of 6 mumol phospholipid/mg protein. Specific binding of the beta-adrenergic ligand [3H]dihydroalprenolol ([3H]DNA) was 0.9-1.9 pmol/mg protein. Reconstitution of receptors into vesicles restored their ability to bind [125I]iodohydroxybenzylpindolol ([125I]IHYP). This ligand does not bind to detergent-solubilized receptors. [125I]IHYP binding was saturable [Kd = 84 pM] and competed appropriately with (+) and (-) isomers of beta-adrenergic agonists and antagonists. These receptor vesicles therefore appear to be an excellent model system for the study of beta-adrenergic receptor function in a defined lipid milieu.  相似文献   

7.
We describe the rapid incorporation of the CHAPS solubilized dihydropyridine receptor into phospholipid vesicles. A series of sucrose gradient sedimentation experiments demonstrate that the (+)-[3H]PN200-110-labeled dihydropyridine receptor is associated with lipid vesicles following detergent removal by Extracti-gel chromatography. Solubilization of the receptor results in a loss of (+)-[3H]PN200-110 binding affinity relative to that observed in native membranes; the high affinity binding of (+)-[3H]PN200-110 can be restored upon reincorporation of the receptor into phospholipid vesicles. Similarly, the incorporation of the receptor restores its stability to incubation at 37 degrees C relative to that of the detergent solubilized receptor, thereby mimicking the properties of the membrane bound form of the receptor. The dissociation rate of (+)-[3H]PN200-110 from the reconstituted receptor is shown to be allosterically regulated by verapamil and diltiazem, indicating that the binding sites for these calcium antagonists have been inserted along with the dihydropyridine receptor into phospholipid vesicles. The results presented in this report, thus demonstrate the successful reconstitution of the dihydropyridine receptor into phospholipid vesicles by a variety of criteria. The reconstitution method described here is rapid and efficient, and should now facilitate structure-function studies of this receptor and its interrelationships with other regulatory components of the voltage-sensitive calcium channel system.  相似文献   

8.
The comparative study of heated corpuscular vaccines prepared from S. minnesota mutant R 595 with defective lipopolysaccharide (LPS), chemotype Re, derived from S. minnesota strain SF 1111 with unchanged LPS, and from P. aeruginosa strain PA 103, was carried out. In contrast to the vaccine from S. minnesota strain SF 1111, the vaccine prepared from the mutant with chemotype Re induced the development of cell-mediated and humoral immunity to P. aeruginosa, and its immunogenicity was close to that of the vaccine from P. aeruginosa strain PA 103.  相似文献   

9.
Deuterium order parameters have been determined for approximately 5 mol% selectively deuterated palmitic acid incorporated into the outer monolayer of high-density lipoproteins (HDL3). The values are SCD = 0.38 for [2,2-2H2]palmitic acid, 0.38 for [4,4-2H2]palmitic acid, 0.37 for [5,5,6,6-2H4]palmitic acid, 0.23 for [11,11,12,12-2H4]palmitic acid, and 0.05 for [16,16,16-2H3]palmitic acid. Comparison of the acyl chain order parameters in HDL3 with acyl chain order parameters determined recently [Parmar, Y.I., Wassall, S.R., & Cushley, R.J. (1984) J. Am. Chem. Soc. 106, 2434-2435] for approximately 5 mol% deuterated palmitic acid in sonicated unilamellar vesicles, composed of the same ratio of phosphatidylcholine/sphingomyelin (85/15 w/w) found in HDL3, shows that acyl chain order in the HDL3 monolayer is approximately 3-5 times higher than in the vesicle bilayer. The acyl chain order in the lipoprotein monolayer is approximately 1.5-2 times higher than in the bilayer of phosphatidylcholine multilamellar dispersions. Deuterium longitudinal relaxation times have been measured for deuterated palmitic acid in HDL3, and the values T1 approximately 16 ms for C2H2 and 170 ms for C2H3 groups are a factor of more than 2 times smaller than found in phospholipid bilayers.  相似文献   

10.
Lipopolysaccharides of different wild-type and mutant gram-negative bacteria, as well as synthetic and bacterial free lipid A, were studied for their ability to activate arachidonic acid metabolism in mouse peritoneal macrophages in vitro. It was found that lipopolysaccharides of deep-rough mutants of Salmonella minnesota and Escherichia coli (Re to Rc chemotypes) stimulated macrophages to release significant amounts of leukotriene C4 (LTC4) and prostaglandin E2 (PGE2). Lipopolysaccharides of wild-type strains (S. abortus equi, S. friedenau) only induced PGE2 and not LTC4 formation. Unexpectedly, free bacterial and synthetic E. coli lipid A were only weak inducers of LTC4 and PGE2 production. Deacylated Re-mutant lipopolysaccharide preparations were inactive. However, co-incubation of macrophages with both deacylated lipopolysaccharide and lipid A lead to the release of significant amounts of LTC4 and PGE2, similar to those obtained with Re-mutant lipopolysaccharide. The significance of the lipid A portion of lipopolysaccharide for the induction of LTC4 was indicated by demonstrating that peritoneal macrophages of endotoxin-low-responder mice or of mice rendered tolerant to endotoxin did not respond with the release of arachidonic acid metabolites on stimulation with Re-mutant lipopolysaccharide and that polymyxin B prevented the Re-lipopolysaccharide-induced LTC4 and PGE2 release. Physical measurements showed that the phase-transition temperatures of both free lipid A and S-form lipopolysaccharide were above 37 degrees C while those of R-mutant lipopolysaccharides were significantly lower (30-35 degrees C). Thus, with the materials investigated, an inverse relationship between the phase-transition temperature and the capacity to elicit LTC4 production was revealed.  相似文献   

11.
Synapsin I, a major neuron-specific phosphoprotein, is localized on the cytoplasmic surface of small synaptic vesicles to which it binds with high affinity. It contains a collagenase-resistant head domain and a collagenase-sensitive elongated tail domain. In the present study, the interaction between synapsin I and phospholipid vesicles has been characterized, and the protein domains involved in these interactions have been identified. When lipid vesicles were prepared from cholesterol and phospholipids using a lipid composition similar to that found in native synaptic vesicle membranes (40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, 10% cholesterol, wt/wt), synapsin I bound with a dissociation constant of 14 nM and a maximal binding capacity of about 160 fmol of synapsin I/microgram of phospholipid. Increasing the ionic strength decreased the affinity without greatly affecting the maximal amount of synapsin I bound. When vesicles containing cholesterol and either phosphatidylcholine or phosphatidylcholine/phosphatidylethanolamine were tested, no significant binding was detected under any conditions examined. On the other hand, phosphatidylcholine vesicles containing either phosphatidylserine or phosphatidylinositol strongly interacted with synapsin I. The amount of synapsin I maximally bound was directly proportional to the percentage of acidic phospholipids present in the lipid bilayer, whereas the Kd value was not affected by varying the phospholipid composition. A study of synapsin I fragments obtained by cysteine-specific cleavage showed that the collagenase-resistant head domain actively bound to phospholipid vesicles; in contrast, the collagenase-sensitive tail domain, though strongly basic, did not significantly interact. Photolabeling of synapsin I was performed with the phosphatidylcholine analogue 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl] [2-3H]undecanoyl]-sn-glycero-3-phosphocholine; this compound generates a highly reactive carbene that selectively interacts with membrane-embedded domains of membrane proteins. Synapsin I was significantly labeled upon photolysis when incubated with lipid vesicles containing acidic phospholipids and trace amounts of the photoactivatable phospholipid. Proteolytic cleavage of photolabeled synapsin I localized the label to the head domain of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The comparative study of heated corpuscular vaccines prepared from S. minnesota mutant R 595, chemotype Re, from S. minnesota strain SF 1111 with defective lipopolysaccharide and from P. aeruginosa strain PA 103 has been carried out. The vaccine prepared from the chemotype Re mutant, in contrast to the vaccine prepared from S. minnesota strain SF 1111, has been found to induce the development of active immunity (and the corresponding antiserum, passive immunity) to P. aeruginosa introduced intranasally into mice, as well as to stimulate the elimination of the cells of P. aeruginosa infective strain from the lungs of the mice. The potency of the vaccine prepared from the chemotype Re mutant has been found to be significantly no different from that of the vaccine prepared from P. aeruginosa strain PA 103.  相似文献   

13.
Plasma membrane vesicles derived from corn (Zea mays L.) roots retain a membrane-bound H+-ATPase that is able to form a H+ gradient across the vesicle membranes. The activity of this ATPase is enhanced 2- to 3-fold when Triton X-100 or lysophosphatidylcholine is added to the medium at a protein:detergent ratio of 2:1 (w/w). In the absence of detergent, the ATPase exhibits only one Km for ATP (0.1-0.2 mM), which is the same as for the pumping of H+. After the addition of either Triton X-100 or lysophosphatidylcholine, two Km's for ATP are detected, one in the range of 1 to 3 [mu]M and a second in the range of 0.1 to 0.2 mM. The Vmax of the second Km for ATP increases as the temperature of the assay medium is raised from 15[deg]C to 38[deg]C. The Arrhenius plot reveals a single break at 30[deg]C, both in the absence and in the presence of detergents. In the presence of Triton X-100 the H+-ATPase catalyzes the cleavage of glucose-6-phosphate when both hexokinase and ADP are included in the assay medium. There is no measurable cleavage when the apparent affinity for ATP of the H+-ATPase is not enhanced by Triton X-100 or when 1 mM glucose is included in the assay medium. These data indicate that when the high-affinity Km for ATP is unmasked with the use of detergent, the ATPase can use glucose-6-phosphate and hexokinase as an ATP-regenerating system.  相似文献   

14.
Hydrophobic binding domains of rat intestinal maltase-glucoamylase   总被引:1,自引:0,他引:1  
Rat intestinal microvillus maltase-glucoamylase was isolated by detergent extraction and purification in the presence of protease inhibitors as previously described and incorporated into phospholipid vesicles. After purification of the vesicles on Sephadex G-50, maltase was labelled with 3-trifluoromethyl-3-(m-[125I]iodophenyl) diazirine ([125I]TID) by photolysis using a water-jacketed mercury vapour lamp with a saturated CuSO4 filter. The labelled enzyme was extracted with acetone, resuspended in 1% Triton X-100, reincorporated into phospholipid vesicles, and digested with activated papain to release the hydrophilic polar head of the enzyme from the vesicle bilayer. Vesicle-bound and free enzyme components were separated on Sepharose 4B. Ninety percent of the enzymatic activity was free, while a similar percentage of radioactive label remained with the vesicles in keeping with the separation of an active polar headpiece from a labelled apolar peptide in the lipid bilayer. The vesicle fractions were subjected to chromatography on Sephadex LH-60 with ethanol--formic acid (7:3) as the eluant. A single radioactive peak (14 kilodaltons (kDa)) was separated from labelled lipid. Sodium dodecyl sulfate--polyacrylamide gel electrophoresis of the peak showed a radioactive doublet of 26-28 kDa, possibly representing a dimer. No other labelled peptides were found. These results suggest that detergent-solubilized maltase-glucoamylase is inserted into the phospholipid bilayer via an apolar peptide with a minimum molecular mass of 14 kDa. The peptide probably represents a terminal anchor segment of the 145-kDa subunit which is converted to 130 kDa when the membrane-bound enzyme is solubilized by papain.  相似文献   

15.
Splenic lymphocytes from CBA/J, AKR/A/J, BALB/c/A, C57/BL/6J, C3H/HeJ and C3H/Tif nu/nu mice and B lymphocyte or T lymphocyte preparations derived from CBA/J mouse spleen were cultivated in the presence of either concanavalin A, phytohemagglutinin, Salmonella minnesota R595 lipopolysaccharide or Proteus mirabilis soluble lipoprotein. The mitogens stimulated the incorporation of [14C]galactose into acid-insoluble cell material with the same specificity for B or T cells as that known for thymidine incorporation. The glycolipids extracted from mitogen-activated, carbohydrate-labelled B or T cells were compared by thin-layer chromatography and characteristic differences between B and T cells were noted in the ganglioside as well as in the neutral glycolipid fractions. In addition, subsets of B or T cells, namely lipopolysaccharide-responsive or lipoprotein-responsive B-cell populations or nylon-purified T cells may be recognized by characteristic neutral glycolipid bands.  相似文献   

16.
Partial extraction of cholesterol and phospholipid from membrane vesicles in rabbit seminal plasma decreased their inhibitory effect on fertilizing capacity in rabbit spermatozoa. Pronase digestion, to remove surface proteins, had no pronounced effect on vesicle decapacitation activity. Evidence of fusion between these vesicles and spermatozoa was obtained using [3H] galactose labelled vesicles. The results are consistent with addition of vesicle lipid (cholesterol) to the sperm plasma membrane causing an inhibition of fertilizing capacity.  相似文献   

17.
We have developed a unilamellar phospholipid vesicle system which contains the N-formyl peptide receptor and GTP binding proteins. Several detergents were investigated but only two, octyl glucoside (35 mM) and deoxycholate (7.5 mM), were capable of extracting N-formyl peptide receptor from neutrophil membranes in a form which remained functionally active upon reconstitution into phospholipid vesicles. Extracted proteins were reconstituted into phosphatidylcholine vesicles by passage over a Sephadex G-50-80 column. The reconstituted formylpeptide receptor could bind [3H]FMLP (3H-labeled fMet-Leu-Phe) and [125I]FMLPL-SASD (125I-labeled N-formylmethionylleucylphenylalanyl-N epsilon-(2-(p-azidosalicylamido)ethyl- 1,3'-dithiopropionyl)lysine) while the endogenous G protein could bind [35S]GTP gamma S. Furthermore, the functional interaction of the two proteins was preserved. Addition of the nonhydrolyzable guanine nucleotide, GTP gamma S, shifted the N-formyl peptide receptor from a high- to a low-affinity binding state for ligand. The development of this in vitro reconstitution system should provide a basis to study the mechanism of interaction of the N-formyl peptide receptor and the G protein.  相似文献   

18.
Salmonella minnesota Re and Ra lipopolysaccharides (LPSs) and Escherichia coli K-12 LPS formed three-dimensional crystals, either hexagonal plates (preferential growth along the a axis) or solid columns (preferential growth along the c axis), when they were precipitated by the addition of 2 volumes of 95% ethanol containing 375 mM MgCl2 and incubated in 70% ethanol containing 250 mM MgCl2 at 4 degrees C for 10 days. Analyses of crystals suggested that they consist of hexagonal lattices with the a axis (a side of the lozenge as a unit cell on the basal plane) of 0.462 nm for all these three kinds of LPSs and the c axes (perpendicular to the basal plane) of 5.85, 8.47, and 8.75 nm for S. minnesota Re and Ra LPSs and E. coli K-12 LPS, respectively, and that hydrocarbon chains of the lipid A portion play the leading part in crystallization, whereas the hydrophilic part of the lipid A (the disaccharide backbone) and R core exhibit a disordered structure or are in a random orientation. The phenomenon of doubling of the a axis to 0.924 nm was observed with crystals of S. minnesota Re LPS when they were incubated in 70% ethanol for an additional 180 days, but not with crystals of S. minnesota Ra LPS or E. coli K-12 LPS. S. minnesota S-form LPS possessing the O-antigen-specific polysaccharide and S. minnesota free lipid A obtained by acid hydrolysis of Re LPS did not crystallize under the same experimental conditions.  相似文献   

19.
In an attempt to define the mechanism by which endotoxin induces its biological activity, we studied the effect of the incorporation of lipopolysaccharide and lipid A into phospholipid vesicles (liposomes) on the stimulation of the macrophage cell-line RAW 264.7 and on the coagulation of Limulus amoebocyte lysate. The incorporation of Salmonella minnesota smooth-and rough (Re) lipopolysaccharide or primarily monophosphoryl lipid A into multilamellar and small unilamellar vesicles consisting of phosphatidylcholine, phosphatidylserine and cholesterol (molar ratio 4:1:4) reduced the interleukin 1 inducing potency of these substances about 1000-fold. When corrected for the actual uptake of radiolabeled free and liposome-incorporated lipopolysaccharide by the cells, this difference amounted to 100- to 1000-fold. In addition, liposome-associated Re-lipopolysaccharide was about 1000-fold less potent in stimulating the Fc-receptor mediated uptake of IgG-coated sheep erythrocytes by the cells. The ability of lipopolysaccharide and lipid A to coagulate the Limulus amoebocyte lysate appeared to be at least 100-fold decreased upon incorporation into phospholipid vesicles. Control experiments demonstrated that liposomes prepared without lipopolysaccharide did not reduce the studied activities of free lipopolysaccharide. In conclusion, the incorporation of lipopolysaccharide into the liposomal membrane probably prevents the interaction of the hydrophobic portion of the lipid A component of lipopolysaccharide with the plasma-membrane structures involved in the activation of macrophages and with the proteins of the Limulus amoebocyte lysate. This indicates that the direct interaction of the lipid A moiety of lipopolysaccharide with the macrophage plasma-membrane is required to optimally trigger the studied responses.  相似文献   

20.
The pathway for membrane phospholipid fatty acid turnover in situ may be important in the regulation of the composition and turnover of the lipid microenvironment of membrane proteins. This pathway has been characterized further by studying the activation and incorporation of [9,10(n)-3H]oleic acid and transesterification of [1-14C]oleoyl-CoA into membrane phospholipids by isolated erythrocyte membrane ghosts and inside-out vesicles derived from these ghosts. Erythrocyte ghosts and sealed vesicles of defined orientation prepared from them have been widely employed in studies of the function of membrane proteins, particularly those which mediate the transport of ions and sugars. Preparation of inside-out vesicles from ghosts by exposure to alkaline hypotonic conditions results in elution of some membrane proteins but no loss of membrane phospholipid. Compared to ghosts, the ability of inside-out vesicles to activate and incorporate [9,10(n)-3H]oleic acid into phospholipid is diminished by over 90% and the ability of inside-out vesicles to transesterify [1-14C]oleoyl-CoA to phospholipid is diminished by over 50%. These findings indicate that exposure of erythrocyte membranes to the alkaline hypotonic conditions required for inside-out vesicle preparation results in loss or inactivation of both acyl-CoA ligase and acyl-CoA-lysophospholipid acyltransferase activities. This lability of the enzymes for in situ phospholipid fatty acid turnover should be considered in the design and interpretation of studies concerned with elucidation of the relationship between phospholipid fatty acid turnover and the regulation of membrane protein function in this membrane preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号