首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chlorosomes, the light-harvesting apparatus of green bacteria, are a unique antenna system, in which pigments are organized in aggregates rather than associated with proteins. Isolated chlorosomes from the green sulphur bacterium Chlorobium tepidum contain 10 surface-exposed proteins. Treatment of chlorosomes from Chlorobium tepidum with protease caused changes in the spectral properties of bacteriochlorophyll c and digestion of chlorosome proteins. Using SDS-PAGE analysis, immunoblotting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) we have investigated the topology of the 59-residue CsmA protein. Our results show that at the N-terminus, the only amino acid available for protease degradation is the methionine. At the C-terminus, amino acids can be removed by protease treatment to produce a residual protein containing at least the sequence between residues 2 and 38. These results indicate that the N-terminal portion of the CsmA protein, which is predicted to be mainly hydrophobic, is buried in the chlorosome envelope.  相似文献   

2.
The csmB gene, encoding the 7.5-kDa “Gerola-Olson” protein of chlorosomes, has been cloned and sequenced from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Two potential start codons were identified, and the csmB gene may be translated into a preprotein with an amino-terminal extension. Two forms of the mature CsmB protein (74 or 75 amino acids in length) were identified that differ by the presence or absence of a methionine residue at the amino terminus. The csmB gene of Chl. tepidum is transcribed as an abundant monocistronic mRNA of approximately 350 nucleotides; primer extension mapping of the 5′ endpoint of the csmB mRNA suggests there is strong similarity between the csmB promoter and the σ70 promoters of Escherichia coli. The CsmB protein of Chl. tepidum was overproduced as a histidine-tagged fusion protein in E. coli, purified to homogeneity by Ni2+ chelation affinity chromatography, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments with isolated chlorosomes using anti-CsmB antibodies indicate that the CsmB protein is a component of the chlorosome envelope. Received: 28 May 1996 / Accepted: 17 July 1996  相似文献   

3.
Unnatural glycolipids possessing the diyne moiety in their acyl groups were successfully biosynthesized in the green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum by cultivation with supplementation of 10,12-heptadecadiynic acid. Monogalactosyldiacylglycerol (MGDG) and rhamnosylgalactosyldiacylglycerol (RGDG) esterified with one 10,12-heptadecadiynic acid were primarily formed in the cells, and small amounts of glycolipids esterified with the two unnatural fatty acids can also be detected. The relative ratio of these unnatural glycolipids occupied in the total glycolipids was estimated to be 49% based on HPLC analysis using a evaporative light scattering detector. These results indicate that the acyl groups in glycolipids, which play important roles in the formation of extramembranous antenna complexes called chlorosomes, can be modified in vivo by cultivation of green sulfur photosynthetic bacteria with exogenous synthetic fatty acids. Visible absorption and circular dichroism spectra of Cba. tepidum containing the unnatural glycolipids demonstrated the formation of chlorosomes, indicating that the unnatural glycolipids in this study did not interfere with the biogenesis of chlorosomes.  相似文献   

4.
Targeted mutagenesis was used to investigate the roles of the CsmA and CsmC proteins of the chlorosomes of the green bacteria Chlorobium tepidum and Chlorobium vibrioforme 8327. Under the photoautotrophic growth conditions employed, CsmA is required for the viability of the cells but CsmC is dispensable. The absence of CsmC caused a small red shift in the near-infrared absorption maximum of bacteriochlorophyll d in whole cells and chlorosomes, but chlorosomes were assembled in and could be isolated from the csmC mutant. The doubling time of the csmC mutant was approximately twice that of the wild-type strain. Fluorescence emission measurements suggested that energy transfer from the bulk bacteriochlorophyll d to another pigment, perhaps bacteriochlorophyll a, emitting at 800–804 nm, was less efficient in the csmC mutant cells than in wild-type cells. These studies establish that transformation and homologous recombination can be employed in targeted mutagenesis of Chlorobium sp. and further demonstrate that chlorosome proteins play important roles in the structure and function of these light-harvesting organelles.  相似文献   

5.
6.
Chlorosomes are the light harvesting structures of green photosynthetic bacteria. Each chlorosome from green sulfur bacteria houses hundreds of thousands of bacteriochlorophyll molecules in addition to smaller amounts of chlorobiumquinone and carotenoids. In electron microscopy studies, chlorosomes exhibit different appearances depending on the fixation method used. Fixation with osmium tetroxide results in electron-transparent chlorosomes. Fixation with potassium permanganate results in clearly delineated electron-dense chlorosomes. This fixation method features an electron-transparent area in the interior of the chlorosome. In addition to electron density patterns that can be considered compositions of rod-shaped elements, chlorosomes exhibit a striation pattern that is oriented parallel to the longitudinal axis. Treatment with osmium tetroxide followed by potassium permanganate treatment results in a more diffused density distribution that outlines connecting elements between the chlorosome and the cytoplasmic membrane, and connecting elements between the cytoplasmic membrane and the outer membrane, which act as a diffusion barrier for electron density.  相似文献   

7.
The pump-probe kinetics of the slowest spectral equilibrations between inequivalent BChl a Qy states in FMO trimers from Chlorobium tepidum are decelerated by nearly two orders of magnitude when the temperature is lowered from 300 K to 19 K. The pump-probe anisotropy decays are also markedly slower at 19 K than at 300 K. Singlet-singlet annihilation in FMO trimers is negligible at the laser powers used here. However, reduced temperatures greatly accentuate the probability of singlet-triplet annihilation, due to accumulation of metastable BChl a states under high laser repetition rates.Abbreviations BChl bacteriochlorophyll - FMO Fenna-Matthews-Olson - fwhm full width at half maximum - PB photobleaching - SE stimulated emission  相似文献   

8.
Yevenes AE  Marquez V  Watt RK 《Biochimie》2011,93(2):352-360
The Chlorobium tepidum ferritin (CtFtn) gene was synthesized and cloned into a pET3a expression vector (Novagen). CtFtn was expressed in Escherichia coli and purified to electrophoretic homogeneity. Sequence analysis indicates that all the conserved amino acids required to form the Fe2+ oxidizing ferroxidase center are present. Ftn is highly conserved from bacteria to humans, each subunit folds into a 4-helical bundle (helices A-D), with a long loop connecting helices B and C, plus a fifth short E-helix at the C-terminus. Calculations based on the secondary structure of CtFtn predict that each of these helices forms. However, the sequence of CtFtn shows a much longer C-terminus with a significant number of polar amino acids. Size-exclusion chromatography shows that CtFtn elutes at a size consistent with a 24-subunit protein cage. Incubation of CtFtn with Fe2+ produced an increase in the absorbance at 310 nm consistent with the incorporation of iron inside CtFtn. Assays monitoring ferroxidase activity showed that CtFtn possesses ferroxidase activity but it is less active than human H-chain ferritin. Additionally, the iron loading capacity of CtFtn is significantly reduced compared to proteins from other organisms. We propose that the unique extended C-terminus in CtFtn causes the decreased iron loading in CtFtn and possibly influences the slower rate of iron oxidation at the ferroxidase center.  相似文献   

9.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

10.
The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.  相似文献   

11.
A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.  相似文献   

12.
Four strains of the green sulfur bacterium Chlorobium were studied in respect to nitrogen nutrition and nitrogen fixation. All strains grew on ammonia, N2, or glutamine as sole nitrogen sources; certain strains also grew on other amino acids. Acetylene-reducing activity was detectable in all strains grown on N2 or on amino acids (except for glutamine). In N2 grown Chlorobium thiosulfatophilum strain 8327 1 mM ammonia served to switch-off nitrogenase activity, but the effect of ammonia was much less dramatic in glutamate or limiting ammonia grown cells. The glutamine synthetase inhibitor methionine sulfoximine inhibited ammonia switch-off in all but one strain. Cell extracts of glutamate grown strain 8327 reduced acetylene and required Mg2+ and dithionite, but not Mn2+, for activity. Partially purified preparations of Rhodospirillum rubrum nitrogenase reductase (iron protein) activating enzyme slightly stimulated acetylene reduction in extracts of strain 8327, but no evidence for an indigenous Chlorobium activating enzyme was obtained. The results suggest that certain Chlorobium strains are fairly versatile in their nitrogen nutrition and that at least in vivo, nitrogenase activity in green bacteria is controlled by ammonia in a fashion similar to that described in nonsulfur purple bacteria and in Chromatium.Non-common abbreviations MSX Methionine sulfoximine - MOPS 3-(N-morpholino) propane sulfonic acid This paper is dedicated to Professor Norbert Pfennig on the occasion of his 60th birthday  相似文献   

13.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron–sulfur protein PscB, but were devoid of Fenna–Matthews–Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC (cytochrome c). In order to allow accurate determination of the pigment content of the RCC complexes, the extinction coefficients of bacteriochlorophyll (BChl) a in several solvents were redetermined with high precision. They varied between 54.8 mM−1 cm−1 for methanol and 97.0 mM−1 cm−1 for diethylether in the QY maximum. Both preparations appeared to contain 16 BChls a of which two are probably the 132-epimers, 4 chlorophylls (Chls) a 670 and 2 carotenoids per RCC. The latter were of at least two different types. Quinones were virtually absent. The absorption spectra were similar for the two species, but not identical. Eight bands were present at 6 K in the BChl a QY region, with positions varying from 777 to 837 nm. The linear dichroism spectra showed that the orientation of the BChl a QY transitions is roughly parallel to the membrane plane; most nearly parallel were transitions at 800 and 806 nm. For both species, the circular dichroism spectra were dominated by a strong band at 807–809 nm, indicating strong interactions between at least some of the BChls. The absorption, CD and LD spectra of the four Chls a 670 were virtually identical for both RCC complexes, indicating that their binding sites are highly conserved and that they are an essential part of the RCC complexes, possibly as components of the electron transfer chain. Low temperature absorption spectroscopy indicated that typical FMO–RCC complexes of Ptc. aestuarii and Chl. tepidum contain two FMO trimers per reaction centre. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
1. Chlorobium limicola forma sp. thiosulfatophilum was cultivated at 22 and 22000 lux. 2. The content of bchl d on a protein basis in the low light intensity cultures was about twice that of the high light intensity cultures. 3. After growth at 22 lux the red bchl d peak was at c. 743 nm, while at the higher intensity this peak was at c. 732 nm. 4. Electron microscopy of thin sections of Chlorobium revealed that vesicle size was greater at the low light intensity than at the high. 5. This was confirmed by sucrose density gradient centrifugation of differentially 14C-labelled vesicles from cultures grown at the two intensities. 6. The optimum temperature for growth was about 35°C. Incubation at the optimum temperature was particularly beneficial at high light intensity.Abbreviation bchl bacteriochlorophyll  相似文献   

16.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

17.
In this study, we performed the first large-scale identification of N-terminal peptides from the green sulfur bacterium Chlorobaculum tepidum. Combined fractional diagonal chromatography (COFRADIC) was used to isolate protein N-terminal peptides from three different proteome preparations, and following LC-MS/MS analysis, over 621 different proteins were identified by their N-terminal peptides. Our data constitute the largest data set currently available for protein N-termini of prokaryotic photosynthetic organisms.  相似文献   

18.
The ORF sequences of the gene encoding sepiapterin reductase were cloned from the genomic DNAs of Chlorobium tepidum and Chlorobium limicola, which are known to produce L-threo- and L-erythro-tetrahydrobiopterin (BH4)-N-acetylglucosamine, respectively. The deduced amino acid sequence of C. limicola consists of 241 residues, while C. tepidum SR has three residues more at the C-terminal. The overall protein sequence identity was 87.7%. Both recombinant proteins generated from Escherichia coli were identified to catalyze reduction of diketo compound 6-pyruvoyltetrahydropterin to L-threo-BH4. This result suggests that C. limicola needs an additional enzyme for L-erythro-BH4 synthesis to yield its glycoside. The catalytic activity of Chlorobium SRs also supports the previously proposed mechanism of two consecutive reductions of C1' carbonyl group of 6-pyruvoyltetrahydropterin via isomerization reaction.  相似文献   

19.
Chlorosomes, the antenna complexes of green bacteria, are unique antenna systems in which pigments are organized in aggregates. Studies on isolated chlorosomes from Chlorobaculum tepidum based on SDS-PAGE, immunoblotting and molecular biology have revealed that they contain ten chlorosomal proteins, but no comprehensive information is available about the protein composition of the entire organelle. To extend these studies, chlorosomes were isolated from C. tepidum using three related and one independent isolation protocol and characterized by absorption spectroscopy, tricine SDS-PAGE, dynamic light scattering (DLS) and electron microscopy. Tricine SDS-PAGE showed the presence of more than 20 proteins with molecular weights ranging between 6 and 70 kDa. The chlorosomes varied in size. Their hydrodynamic radius (R(h) ) ranged from 51 to 75 nm and electron microscopy indicated that they were on average 140 nm wide and 170 nm long. Furthermore, the mass of 184 whole chlorosome organelles determined by scanning transmission electron microscopy ranged from 27 to 237 MDa being on average 88 (±28) MDa. In contrast their mass-per-area was independent of their size, indicating that there is a strict limit to chlorosome thickness. The average protein composition of the C. tepidum chlorosome organelles was obtained by MS/MS-driven proteomics and for the first time a detailed protein catalogue of the isolated chlorosomal proteome is presented. Based on the proteomics results for chlorosomes isolated by different protocols, four proteins that are involved in the electron or ion transport are proposed to be tightly associated with or incorporated into C. tepidum chlorosomes as well as the ten Csm proteins known to date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号