首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated the emergence of human immunodeficiency virus type 1 (HIV-1) subtypes with various levels of fitness. Using heterogeneous maximum-likelihood models of adaptive evolution implemented in the PAML software package, with env sequences representing each HIV-1 group M subtype, we examined the various intersubtype selective pressures operating across the env gene. We found heterogeneity of evolutionary mechanisms between the different subtypes with a category of amino acid sites observed that had undergone positive selection for subtypes C, F1, and G, while these sites had undergone purifying selection in all other subtypes. Also, amino acid sites within subtypes A and K that had undergone purifying selection were observed, while these sites had undergone positive selection in all other subtypes. The presence of such sites indicates heterogeneity of selective pressures within HIV-1 group M subtype evolution that may account for the various levels of fitness of the subtypes.  相似文献   

2.
The virulence properties of human immunodeficiency virus type 2 (HIV-2) are known to vary significantly and to range from relative attenuation in certain individuals to high-level pathogenicity in others. These differences in clinical manifestations may, at least in part, be determined by genetic differences among infecting virus strains. Evaluation of the full spectrum of HIV-2 genetic diversity is thus a necessary first step towards understanding its molecular epidemiology, natural history of infection, and biological diversity. In this study, we have used nested PCR techniques to amplify viral sequences from the DNA of uncultured peripheral blood mononuclear cells from 12 patients with HIV-2 seroreactivity. Sequence analysis of four nonoverlapping genomic regions allowed a comprehensive analysis of HIV-2 phylogeny. The results revealed (i) the existence of five distinct and roughly equidistant evolutionary lineages of HIV-2 which, by analogy with HIV-1, have been termed sequence subtypes A to E; (ii) evidence for a mosaic HIV-2 genome, indicating that coinfection with genetically divergent strains and recombination can occur in HIV-2-infected individuals; and (iii) evidence supporting the conclusion that some of the HIV-2 subtypes may have arisen from independent introductions of genetically diverse sooty mangabey viruses into the human population. Importantly, only a subset of HIV-2 strains replicated in culture: all subtype A viruses grew to high titers, but attempts to isolate representatives of subtypes C, D, and E, as well as the majority of subtype B viruses, remained unsuccessful. Infection with all five viral subtypes was detectable by commercially available serological (Western immunoblot) assays, despite intersubtype sequence differences of up to 25% in the gag, pol, and env regions. These results indicate that the genetic and biological diversity of HIV-2 is far greater than previously appreciated and suggest that there may be subtype-specific differences in virus biology. Systematic natural history studies are needed to determine whether this heterogeneity has clinical relevance and whether the various HIV-2 subtypes differ in their in vivo pathogenicity.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) strains can be separated into genetic subtypes based on phylogenetic analysis of the envelope gene. Once it had been shown that population-wide intrasubtype genetic variation of HIV-1 strains increases in the course of the AIDS epidemic, it remained uncertain whether HIV-1 subtypes are phenotypic entities spreading as distinct virus populations. To examine this, we applied Eigen's concepts of sequence geometry and fitness topography to the analysis of intrasubtype evolution of the gp120 V3 domain of HIV-1 subtypes A, B, C, and D in the course of the global AIDS epidemic. We observed that despite the high evolution rate of HIV-1, the nonsynonymous distances to the subtype consensus of sequences obtained early in the epidemic are similar to those obtained more than 10 years later, in contrast to the synonymous distances, which increased steadily over time. For HIV-1 subtype B, we observed that the evolution rate of the individual sequences is independent of their distance from the subtype B consensus, but for the individual sequences most distant from the consensus evolution away from the consensus is constrained. As a result, individual HIV-1 genomes fluctuate within a sequence space with fixed distance to the subtype consensus. Our findings suggest that the evolution of the V3 domain of HIV-1 subtypes A, B, C, and D is confined to an area in sequence space within a fixed distance to the consensus of a respective subtype. This in turn indicates that each HIV-1 subtype is a distinct viral quasispecies that is well adapted to the present environment, able to maintain its identity in the V3 region over time, and unlikely to merge during progression of the AIDS epidemic.  相似文献   

4.
The genetic evolution of human immunodeficiency virus type 1 (HIV-1) in the brain is distinct from that in lymphoid tissues, indicating tissue-specific compartmentalization of the virus. Few primary HIV-1 envelope glycoproteins (Envs) from uncultured brain tissues have been biologically well characterized. In this study, we analyzed 37 full-length env genes from uncultured brain biopsy and blood samples from four patients with AIDS. Phylogenetic analysis of intrapatient sequence sets showed distinct clustering of brain relative to blood env sequences. However, no brain-specific signature sequence was identified. Furthermore, there was no significant difference in the number or positions of N-linked glycosylation sites between brain and blood env sequences. The patterns of coreceptor usage were heterogeneous, with no clear distinction between brain and blood env clones. Nine Envs used CCR5 as a coreceptor, one used CXCR4, and two used both CCR5 and CXCR4 in cell-to-cell fusion assays. Eight Envs could also use CCR3, CCR8, GPR15, STRL33, Apj, and/or GPR1, but these coreceptors did not play a major role in virus entry into microglia. Recognition of epitopes by the 2F5, T30, AG10H9, F105, 17b, and C11 monoclonal antibodies varied among env clones, reflecting genetic and conformational heterogeneity. Envs from two patients contained 28 to 32 N-glycosylation sites in gp120, compared to around 25 in lab strains and well-characterized primary isolates. These results suggest that HIV-1 Envs in brain cannot be distinguished from those in blood on the basis of coreceptor usage or the number or positions of N-glycosylation sites, indicating that other properties underlie neurotropism. The study also demonstrates characteristics of primary HIV-1 Envs from uncultured tissues and implies that Env variants that are glycosylated more extensively than lab strains and well-characterized primary isolates should be considered during development of vaccines and neutralizing antibodies.  相似文献   

5.
Feline immunodeficiency virus (FIV) is a lentivirus associated with AIDS-like illnesses in cats. As such, FIV appears to be a feline analog of human immunodeficiency virus (HIV). A hallmark of HIV infection is the large degree of viral genetic diversity that can develop within an infected individual and the even greater and continually increasing level of diversity among virus isolates from different individuals. Our goal in this study was to determine patterns of FIV genetic diversity by focusing on a 684-nucleotide region encompassing variable regions V3, V4, and V5 of the FIV env gene in order to establish parallels and distinctions between FIV and HIV type 1 (HIV-1). Our data demonstrate that, like HIV-1, FIV can be separated into distinct envelope sequence subtypes (three are described here). Similar to that found for HIV-1, the pairwise sequence divergence within an FIV subtype ranged from 2.5 to 15.0%, whereas that between subtypes ranged from 17.8 to 26.2%. However, the high number of synonymous nucleotide changes among FIV V3 to V5 env sequences may also include a significant number of back mutations and suggests that the evolutionary distances among FIV subtypes are underestimated. Although only a few subtype B viruses were available for examination, the pattern of diversity between the FIV A and B subtypes was found to be significantly distinct; subtype B sequences had proportionally fewer mutations that changed amino acids, compared with silent changes, suggesting a more advanced state of adaptation to the host. No similar distinction was evident for HIV-1 subtypes. The diversity of FIV genomes within individual infected cats was found to be as high as 3.7% yet twofold lower than that within HIV-1-infected people over a comparable region of the env gene. Despite these differences, significant parallels between patterns of FIV evolution and HIV-1 evolution exist, indicating that a wide array of potentially divergent virus challenges need to be considered in FIV vaccine and pathogenesis studies.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) in the male genital tract may comprise virus produced locally in addition to virus transported from the circulation. Virus produced in the male genital tract may be genetically distinct, due to tissue-specific cellular characteristics and immunological pressures. HIV-1 env sequences derived from paired blood and semen samples from the Los Alamos HIV Sequence Database were analyzed to ascertain a male genital tract-specific viral signature. Machine learning algorithms could predict seminal tropism based on env sequences with accuracies exceeding 90%, suggesting that a strong genetic signature does exist for virus replicating in the male genital tract. Additionally, semen-derived viral populations exhibited constrained diversity (P < 0.05), decreased levels of positive selection (P < 0.025), decreased CXCR4 coreceptor utilization, and altered glycosylation patterns. Our analysis suggests that the male genital tract represents a distinct selective environment that contributes to the apparent genetic bottlenecks associated with the sexual transmission of HIV-1.  相似文献   

7.
Sequence analysis of a human immunodeficiency virus type 1 env gene PCR amplified from a Brazilian woman's peripheral blood mononuclear cell DNA (sample RJIO1) showed that it was likely to have been derived from a double recombination event between human immunodeficiency virus type 1 subtypes B and F. The major portion of the gp120 coding sequence belonged to the B lineage, but a segment of the C2 to V3 region (approximately 135 nucleotides) clearly associated with sequences of the F lineage. The subtype F-like segment had 15 noncontiguous signature nucleotides in common with Brazilian subtype F sequences that were not found, or were rare, in subtype B sequences. In contrast, this same segment had only 3 signature nucleotides shared with subtype B sequences and not present in the Brazilian subtype F sequences. Phylogenetic analysis, amino acid signature pattern analysis, and the pattern of synonymous mutations all supported the hypothesis of a recombinational origin of the RJIO1 sequence. Related recombinant genes were also detected in peripheral blood mononuclear cell DNA obtained from the woman's recent sexual partner, indicating that the recombination event probably occurred at some previous time in the chain of virus transmission. Divergent viral sequences in the V3 region were found in the male sexual partner, while a relatively homogeneous viral population was detected in the woman, consistent with her recent infection.  相似文献   

8.
DNA sequences encoding the C2 to V3 region of envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1) were amplified by PCR from uncultured peripheral blood mononuclear cells obtained from 24 of 25 HIV-1-seropositive patients from Cyprus. By using a heteroduplex mobility assay (HMA), all amplified products were studied genetically and compared with 16 previously characterized HIV-1 strains belonging to subtypes A through F. HMA results revealed that HIV-1 gp120 sequences from 15 of our patients were of subtype B of HIV-1, whereas one isolate was of subtype C. However, gp120 sequences from eight patients had no obvious similarities to the known subtypes as defined by HMA. DNA sequencing and phylogenetic analyses of molecular clones confirmed the HMA results and placed the eight undefined HIV-1 isolates into three distinct genetic clusters. On the basis of branch topology and lengths of the phylogenetic tree, we conclude that one group consisting of three clones from two patients represents a new HIV-1 env subtype, which we have termed subtype I. The remaining two sequence clusters, consisting of five sequences from four patients and two sequences from two other patients, are distally related to subtypes A and F. These data demonstrate the extensive heterogeneity of HIV-1 in Cyprus, including the presence of new subtype.  相似文献   

9.
Genetic variation of human immunodeficiency virus (HIV-1) represents a major obstacle for AIDS vaccine development. To decrease the genetic distances between candidate immunogens and field virus strains, we have designed and synthesized an artificial group M consensus env gene (CON6 gene) to be equidistant from contemporary HIV-1 subtypes and recombinants. This novel envelope gene expresses a glycoprotein that binds soluble CD4, utilizes CCR5 but not CXCR4 as a coreceptor, and mediates HIV-1 entry. Key linear, conformational, and glycan-dependent monoclonal antibody epitopes are preserved in CON6, and the glycoprotein is recognized equally well by sera from individuals infected with different HIV-1 subtypes. When used as a DNA vaccine followed by a recombinant vaccinia virus boost in BALB/c mice, CON6 env gp120 and gp140CF elicited gamma interferon-producing T-cell responses that recognized epitopes within overlapping peptide pools from three HIV-1 Env proteins, CON6, MN (subtype B), and Chn19 (subtype C). Sera from guinea pigs immunized with recombinant CON6 Env gp120 and gp140CF glycoproteins weakly neutralized selected HIV-1 primary isolates. Thus, the computer-generated "consensus" env genes are capable of expressing envelope glycoproteins that retain the structural, functional, and immunogenic properties of wild-type HIV-1 envelopes.  相似文献   

10.
Acquired human immunodeficiency virus type 1(HIV-1) resistance to the fusion inhibitor enfuvirtide (ENF) is primarily associated with mutations within the highly conserved first heptad repeat (HR1) region of gp41. Viral env sequences, however, are remarkably variable, and the envelope genetic background could have an important impact on optimal expression of HR1 mutations. We have examined the genetic evolution of env sequences, ENF susceptibility, and Env replicative capacity in patients failing ENF treatment. Sequential plasma-derived virus populations, obtained from six patients initiating ENF treatment as part of a salvage therapy, were studied using a recombinant phenotypic assay evaluating the entire gp120 and the gp41 ectodomains. Regardless of major differences in the baseline ENF susceptibilities, viral populations with similar phenotypic ENF resistance (50% inhibitory concentration, >3,000 ng/ml) were selected under treatment in four of six patients. As expected, in all patients ENF-resistant viruses harbored one or more HR1 mutations (positions 36, 38, and 43). Interestingly, in five patients the emergence of resistance mutations was not associated with reduced Env replicative capacity. Phylogenetic analysis of env sequences in sequential samples from two patients showed that the HR1 mutations had emerged in the context of env quasi-species that were different from those prevalent at baseline. Thus, the envelope genetic context appears to play a critical role in the selection of HR1 mutations and the expression of ENF resistance, thereby conditioning the evolution of HIV-1 under fusion inhibitor selective pressure.  相似文献   

11.
12.
Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately.  相似文献   

13.
The blind use of models of nucleotide substitution in evolutionary analyses is a common practice in the viral community. Typically, a simple model of evolution like the Kimura two-parameter model is used for estimating genetic distances and phylogenies, either because other authors have used it or because it is the default in various phylogenetic packages. Using two statistical approaches to model fitting, hierarchical likelihood ratio tests and the Akaike information criterion, we show that different viral data sets are better explained by different models of evolution. We demonstrate our results with the analysis of HIV-1 sequences from a hierarchy of samples; sequences within individuals, individuals within subtypes, and subtypes within groups. We also examine results for three different gene regions: gag, pol, and env. The Kimura two-parameter model was not selected as the best-fit model for any of these data sets, despite its widespread use in phylogenetic analyses of HIV-1 sequences. Furthermore, the model complexity increased with increasing sequence divergence. Finally, the molecular-clock hypothesis was rejected in most of the data sets analyzed, throwing into question clock-based estimates of divergence times for HIV-1. The importance of models in evolutionary analyses and their repercussions on the derived conclusions are discussed.  相似文献   

14.
This study examined the relationship between ex vivo human immunodeficiency virus type 1 (HIV-1) fitness and viral genetic diversity during the course of HIV-1 disease. Primary HIV-1 isolates from 10 patients at different time points were competed against control HIV-1 strains in peripheral blood mononuclear cell (PBMC) cultures to determine relative fitness values. Patient HIV-1 isolates sequentially gained fitness during disease at a significant rate that directly correlated with viral load and HIV-1 env C2V3 diversity. A loss in both fitness and viral diversity was observed upon the initiation of antiretroviral therapy. A possible relationship between genotype and phenotype (virus replication efficiency) is supported by the parallel increases in ex vivo fitness and viral diversity during disease, of which the correlation is largely based on specific V3 sequences. Syncytium-inducing, CXCR4-tropic HIV-1 isolates did have higher relative fitness values than non-syncytium-inducing, CCR5-tropic HIV-1 isolates, as determined by dual virus competitions in PBMC, but increases in fitness during disease were not solely powered by a gradual switch in coreceptor usage. These data provide in vivo evidence that increasing HIV-1 replication efficiency may be related to a concomitant increase in HIV-1 diversity, which in turn may be a determining factor in disease progression.  相似文献   

15.
To investigate the process of human immunodeficiency virus type 1 (HIV-1) evolution in vivo, a total of 179 HIV-1 V3 sequences derived from cell-free plasma were determined from serial samples in three epidemiologically linked individuals (one infected blood donor and two transfusion recipients) over a maximum period of 8 years. A systematic analysis of pairwise comparisons of intrapatient sequences, both within and between each sample time point, revealed a preponderance and accumulation of nonsynonymous rather than synonymous substitutions in the V3 loop and flanking regions as they diverged over time. This strongly argues for the dominant role that positive selection for amino acid change plays in governing the pattern and process of HIV-1 env V3 evolution in vivo and nullifies hypotheses of purely neutral or mutation-driven evolution or completely chance events. In addition, different rates of evolution of HIV-1 were observed in these three different individuals infected with the same viral strain, suggesting that the degree of positive pressure for HIV-1 amino acid change is host dependent. Finally, the observed similar rate of accumulation in divergence within and between infected individuals suggests that the process of genetic divergence in the HIV epidemic proceeds regardless of host-to-host transmission events, i.e., that transmission does not reset the evolutionary clock.  相似文献   

16.
Investigation of human immunodeficiency virus type 1 (HIV-1) in the genital tract of women is crucial to the development of vaccines and therapies. Previous analyses of HIV-1 in various anatomic sites have documented compartmentalization, with viral sequences from each location that were distinct yet phylogenetically related. Full-length RNA genomes derived from different compartments in the same individual, however, have not yet been studied. Furthermore, although there is evidence that intrapatient recombination may occur frequently, recombinants comprising viruses from different sites within one individual have rarely been documented. We compared full-length HIV-1 RNA sequences in the plasma and female genital tract, focusing on a woman with high HIV-1 RNA loads in each compartment who had been infected heterosexually and then transmitted HIV-1 by the same route. We cloned and sequenced 10 full-length HIV-1 RNA genomes from her genital tract and 10 from her plasma. We also compared viral genomes from the genital tract and plasma of four additional heterosexually infected women, sequencing 164 env and gag clones obtained from the two sites. Four of five women, including the one whose complete viral sequences were determined, displayed compartmentalized HIV-1 genomes. Analyses of full-length, compartmentalized sequences made it possible to document complex intrapatient HIV-1 recombinants that were composed of alternating viral sequences characteristic of each site. These findings demonstrate that the genital tract and blood harbor genetically distinct populations of replicating HIV-1 and provide evidence that recombination between strains from the two compartments contributes to rapid evolution of viral sequence variation in infected individuals.  相似文献   

17.
潘品良  曾常红 《病毒学报》1999,15(2):97-101
1998年广东某戒毒所HIV阳性感染者的血样,经PCR扩增未培养细胞内HIV前病毒基因并对C2-V3区进行测序和分析,发现两例感染者与巴西F亚型毒株BZ163的基因离散率小于4%;Neighbor-joining系统树表明,它们与F亚型聚在一起;通过异源双链泳动技术分析法(HMA)分析,这两例感染者与F亚型形成明显的异源二聚体。上述各项研究结果表明,F亚型HIV-1已传入我国。  相似文献   

18.

Background

Human T-Cell Lymphotropic Virus Type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It has been estimated that 10–20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown.

Objective

To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide.

Methods

Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt) DNA analysis was performed and individuals classified in mtDNA haplogroups.

Results

LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country.

Conclusions

The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be correlated with at least 3 different HTLV-1 introductions in the country. The significant rate of HTLV-1a/HIV-1C co-infection, particularly in the Mozambican cluster, has important implications for the controls programs of both viruses.  相似文献   

19.
A human host offers a variety of microenvironments to the infecting human immunodeficiency virus type 1 (HIV-1), resulting in various selective pressures, most of them directed against the envelope (env) gene. Therefore, it seems evident that the replicative capacity of the virus is largely related to viral entry. In this study we have used growth competition experiments and TaqMan real-time PCR detection to measure the fitness of subtype B HIV-1 primary isolates and autologous env-recombinant viruses in order to analyze the contribution of wild-type env sequences to overall HIV-1 fitness. A significant correlation was observed between fitness values obtained for wild-type HIV-1 isolates and those for the corresponding env-recombinant viruses (r = 0.93; P = 0.002). Our results suggest that the env gene, which is linked to a myriad of viral characteristics (e.g., entry into the host cell, transmission, coreceptor usage, and tropism), plays a major role in fitness of wild-type HIV-1. In addition, this new recombinant assay may be useful for measuring the contribution of HIV-1 env to fitness in viruses resistant to novel antiretroviral entry inhibitors.  相似文献   

20.
Understanding the properties of human immunodeficiency virus type 1 (HIV-1) variants capable of establishing infection is critical to the development of a vaccine against AIDS. Previous studies of men have shown that the HIV-1 env gene is homogeneous early in infection, leading to the suggestion that infection is established by a single transmitted variant. However, we report here that all of eight homosexual men evaluated beginning 3.7 to 9 weeks following onset of symptoms of acute infection harbored diverse virus populations in their blood, with median genetic distances averaging 1.08% in the env C2V5 region and 0.81% in the gag p17 gene. Within another 4.7 to 11 weeks, the variant lineage in env became more homogeneous, while gag sequences continued to diversify. Thus, the homogenization that has been reported to characterize acute infection is actually preceded by the replication of multiple virus variants. This early selective process focuses on viral properties within Env but not Gag p17. Hence, the viral homogeneity observed early in HIV-1 infection results from a selective process that occurs during the establishment of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号