首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine receptor expression and function in bladder uroepithelium   总被引:2,自引:0,他引:2  
The uroepithelium of the bladder forms an impermeable barrier that is maintained in part by regulated membrane turnover in the outermost umbrella cell layer. Other than bladder filling, few physiological regulators of this process are known. Western blot analysis established that all four adenosine receptors (A1, A2a, A2b, and A3) are expressed in the uroepithelium. A1 receptors were prominently localized to the apical membrane of the umbrella cell layer, whereas A2a, A2b, and A3 receptors were localized intracellularly or on the basolateral membrane of umbrella cells and the plasma membrane of the underlying cell layers. Adenosine was released from the uroepithelium, which was potentiated 10-fold by stretching the tissue. Administration of adenosine to the serosal or mucosal surface of the uroepithelium led to increases in membrane capacitance (where 1 µF 1 cm2 tissue area) of 30% or 24%, respectively, after 5 h. Although A1, A2a, and A3 selective agonists all stimulated membrane capacitance after being administrated serosally, only the A1 agonist caused large increases in capacitance after being administered mucosally. Adenosine receptor antagonists as well as adenosine deaminase had no effect on stretch-induced capacitance increases, but adenosine potentiated the effects of stretch. Treatment with U-73122, 2-aminoethoxydiphenylborate, or xestospongin C or incubation in calcium-free Krebs solution inhibited adenosine-induced increases in capacitance. These data indicate that the uroepithelium is a site of adenosine biosynthesis, that adenosine receptors are expressed in the uroepithelium, and that one function of these receptors may be to modulate exocytosis in umbrella cells. capacitance; exocytosis  相似文献   

2.
All cells experience and respond to external mechanical stimuli including shear stress, compression, and hydrostatic pressure. Cellular responses can include changes in exocytic and endocytic traffic. An excellent system to study how extracellular forces govern membrane trafficking events is the bladder umbrella cell, which lines the inner surface of the mammalian urinary bladder. It is hypothesized that umbrella cells modulate their apical plasma membrane surface area in response to hydrostatic pressure. Understanding the mechanics of this process is hampered by the lack of a suitable model system. We describe a pressure chamber that allows one to increase hydrostatic pressure in a physiological manner while using capacitance to monitor real-time changes in the apical surface area of the umbrella cell. It is demonstrated that application of hydrostatic pressure results in an increase in umbrella cell apical surface area and a change in the morphology of umbrella cells from roughly cuboidal to squamous. This process is dependent on increases in cytoplasmic Ca(2+). This system will be useful in further dissecting the mechanotransduction pathways involved in cell shape change and regulation of exocytic and endocytic traffic in umbrella cells.  相似文献   

3.
The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from approximately 2900 to 4300 microm(2)), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in non-excitable cells.  相似文献   

4.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

5.
Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.  相似文献   

6.
The apical surface of polarized epithelial cells receives input from mediators, growth factors, and mechanical stimuli. How these stimuli are coordinated to regulate complex cellular functions such as polarized membrane traffic is not understood. We analyzed the requirement for growth factor signaling and mechanical stimuli in umbrella cells, which line the mucosal surface of the bladder and dynamically insert and remove apical membrane in response to stretch. We observed that stretch-stimulated exocytosis required apical epidermal growth factor (EGF) receptor activation and that activation occurred in an autocrine manner downstream of heparin-binding EGF-like growth factor precursor cleavage. Long-term changes in apical exocytosis depended on protein synthesis, which occurred upon EGF receptor-dependent activation of mitogen-activated protein kinase signaling. Our results indicate a novel physiological role for the EGF receptor that couples upstream mechanical stimuli to downstream apical EGF receptor activation that may regulate apical surface area changes during bladder filling.  相似文献   

7.
Epithelial cells respond to mechanical stimuli by increasing exocytosis, endocytosis, and ion transport, but how these processes are initiated and coordinated and the mechanotransduction pathways involved are not well understood. We observed that in response to a dynamic mechanical environment, increased apical membrane tension, but not pressure, stimulated apical membrane exocytosis and ion transport in bladder umbrella cells. The exocytic response was independent of temperature but required the cytoskeleton and the activity of a nonselective cation channel and the epithelial sodium channel. The subsequent increase in basolateral membrane tension had the opposite effect and triggered the compensatory endocytosis of added apical membrane, which was modulated by opening of basolateral K+ channels. Our results indicate that during the dynamic processes of bladder filling and voiding apical membrane dynamics depend on sequential and coordinated mechanotransduction events at both membrane domains of the umbrella cell.  相似文献   

8.
Despite almost 25 years of effort, the development of a highly differentiated and functionally equivalent cell culture model of uroepithelial cells has eluded investigators. We have developed a primary cell culture model of rabbit uroepithelium that consists of an underlying cell layer that interacts with a collagen substratum, an intermediate cell layer, and an upper cell layer of large (25-100 micrometer) superficial cells. When examined at the ultrastructural level, the superficial cells formed junctional complexes and had an asymmetric unit membrane, a hallmark of terminal differentiation in bladder umbrella cells. These cultured "umbrella" cells expressed uroplakins and a 27-kDa uroepithelial specific antigen that assembled into detergent-resistant asymmetric unit membrane particles. The cultures had low diffusive permeabilities for water (2.8 x 10(-4) cm/s) and urea (3.0 x 10(-7) cm/s) and high transepithelial resistance (>8000 Omega cm2) was achieved when 1 mM CaCl2 was included in the culture medium. The cell cultures expressed an amiloride-sensitive sodium transport pathway and increases in apical membrane capacitance were observed when the cultures were osmotically stretched. The described primary rabbit cell culture model mimics many of the characteristics of uroepithelium found in vivo and should serve as a useful tool to explore normal uroepithelial function as well as dysfunction as a result of disease.  相似文献   

9.
The increased studies on urinary bladder umbrella cells as an important factor for maintaining the permeability barrier have suggested new pathways for the discoidal/fusiform endocytic vesicles which is one of the main features of the umbrella cells. The biological role of these vesicles was defined, for many years, as a membrane reservoir for the umbrella cell apical plasma membrane which are subject to an increased tension during the filling phase of the micturition cycle and, therefore, the vesicles are fused with the apical membrane. Upon voiding, the added membrane is reinserted via a non-clathrin or caveolin-dependant endocytosis thereby restoring the vesicle cytoplasmic pool. However, in the last decade, new evidence appeared indicating alternative pathways of the endocytic vesicles different than the cycling process of exocytosis/endocytosis. The purpose of this review is to analyze the molecular modulators, such as membrane lipids and proteins, in the permeability of endocytic vesicles, the sorting of endocytosed material to lysosomal degradation pathway and recycling of both membrane and fluid phases.  相似文献   

10.
There are many morphologically distinct membrane structures with different functions at the surface of epithelial cells. Among these, adherens junctions (AJ) and tight junctions (TJ) are responsible for the mechanical linkage of epithelial cells and epithelial barrier function, respectively. In the process of new cell–cell adhesion formation between two epithelial cells, such as after wounding, AJ form first and then TJ form on the apical side of AJ. This process is very complicated because AJ formation triggers drastic changes in the organization of actin cytoskeleton, the activity of Rho family of small GTPases, and the lipid composition of the plasma membrane, all of which are required for subsequent TJ formation. In this review, the authors focus on the relationship between AJ and TJ as a representative example of specialization of plasma membrane regions and introduce recent findings on how AJ formation promotes the subsequent formation of TJ.  相似文献   

11.
Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity.  相似文献   

12.
The mammalian urothelium apical surface plays important roles in bladder physiology and diseases, and it provides a unique morphology for ultrastructural studies. Atomic force microscopy (AFM) is an emerging tool for studying the architecture and dynamic properties of biomolecular structures under near-physiological conditions. However, AFM imaging of soft tissues remains a challenge because of the lack of efficient methods for sample stabilization. Using a porous nitrocellulose membrane as the support, we were able to immobilize large pieces of soft mouse bladder tissue, thus enabling us to carry out the first AFM investigation of the mouse urothelial surface. The submicrometer-resolution AFM images revealed many details of the surface features, including the geometry of the urothelial plaques that cover the entire surface and the membrane interdigitation at the cell borders. This interdigitation creates a membrane zipper, likely contributing to the barrier function of the urothelium. In addition, we were able to image the intracellular bacterial communities of type 1-fimbriated bacteria grown between the intermediate filament bundles of the umbrella cells, shedding light on the bacterial colonization of the urothelium.  相似文献   

13.
The luminal surface of the bladder epithelium is continuously exposed to urine that differs from blood in its ionic composition and osmolality. The apical plasma membrane of facet or umbrella cells, facing the urine, is covered with rigid-looking plaques consisting of hexagonal uroplakin particles. Together with tight junctions these plaques form a specialized membrane compartment that represents one of the tightest and most impermeable barriers in the body. Plaques also occur in the membrane of cytoplasmic discoid vesicles. Here it is shown shown that synaptobrevin, SNAP23 and syntaxin are perfectly colocalized with uroplakin III at the apical plasma membrane as well as with membranes of discoid vesicles. Such a distribution suggests that discoid vesicles in facet cells may gain access to the apical plasma membrane probably by combination of homotypic and heterotypic fusion events. Furthermore, we detected uroplakin III-containing membranes of different sizes in the urine of healthy humans and rats. Probably facet cells maintain their permeability barrier by a process of continuous membrane regeneration that includes the cutting off of areas of the apical membrane and its replacement by newly fused discoid vesicles.  相似文献   

14.
15.
The structure of the urinary bladder of the toad Bufo marinus was studied by light and electron microscopy. The epithelium covering the mucosal surface of the bladder is 3 to 10 microns thick and consists of squamous epithelial cells, goblet cells, and a third class of cells containing many mitochondria and possibly representing goblet cells in early stages of their secretory cycle. This epithelium is supported on a lamina propria 30 to several hundred microns thick and containing collagen fibrils, bundles of smooth muscle fibers, and blood vessels. The serosal surface of the bladder is covered by an incomplete mesothelium. The cytoplasm of the squamous epithelial cells, which greatly outnumber the other types of cells, is organized in a way characteristic of epithelial secretory cells. Mitochondria, smooth and rough surfaced endoplasmic reticulum, a Golgi apparatus, "multivesicular bodies," and isolated particles and vesicles are present. Secretion granules are found immediately under the plasma membranes of the free surfaces of the epithelial cells and are seen to fuse with these membranes and release their contents to contribute to a fibrous surface coating found only on the free mucosal surfaces of the cells. Beneath the plasma membranes on these surfaces is an additional, finely granular component. Lateral and basal plasma membranes are heavily plicated and appear ordinary in fine structure. The cells of the epithelium are tightly held together by a terminal bar apparatus and sealed together, with an intervening space of only 0.02 mµ near the bladder lumen, in such a way as to prevent water leakage between the cells. It is demonstrated in in vitro experiments that water traversing the bladder wall passes through the cytoplasm of the epithelial cells and that a vesicle transport mechanism is not involved. In vitro experiments also show that the basal (serosal) surfaces of the epithelial cells are freely permeable to water, while the free (mucosal) surfaces are normally relatively impermeable but become permeable when the serosal surface of the bladder is treated with neurohypophyseal hormones. The permeability barrier found at the mucosal surface may be represented, structurally, either by the filamentous layer lying external to the plasma membrane, by the intracellular, granular component found just under the plasma membrane, or by both of these components of the mucosal surface complex. The polarity of the epithelial sheet is emphasized and related to the physiological role of the urinary bladder in amphibian water balance mechanisms.  相似文献   

16.
The bladder uroepithelium transmits information to the underlying nervous and musculature systems, is under constant cyclical strain, expresses all four adenosine receptors (A(1), A(2A), A(2B), and A(3)), and is a site of adenosine production. Although adenosine has a well-described protective effect in several organs, there is a lack of information about adenosine turnover in the uroepithelium or whether altering luminal adenosine concentrations impacts bladder function or overactivity. We observed that the concentration of extracellular adenosine at the mucosal surface of the uroepithelium was regulated by ecto-adenosine deaminase and by equilibrative nucleoside transporters, whereas adenosine kinase and equilibrative nucleoside transporters modulated serosal levels. We further observed that enriching endogenous adenosine by blocking its routes of metabolism or direct activation of mucosal A(1) receptors with 2-chloro-N(6)-cyclopentyladenosine (CCPA), a selective agonist, stimulated bladder activity by lowering the threshold pressure for voiding. Finally, CCPA did not quell bladder hyperactivity in animals with acute cyclophosphamide-induced cystitis but instead exacerbated their irritated bladder phenotype. In conclusion, we find that adenosine levels at both surfaces of the uroepithelium are modulated by turnover, that blocking these pathways or stimulating A(1) receptors directly at the luminal surface promotes bladder contractions, and that adenosine further stimulates voiding in animals with cyclophosphamide-induced cystitis.  相似文献   

17.
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 μm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.  相似文献   

18.
Temporary ischemia of the gall bladder was induced in rabbits by ligation of the gall bladder artery with silk. Histological examination revealed vascular disorders, such as hyperemia, blood stasis and focal hemorrhages. Electron microscopic studies showed the presence of increased number dark epithelial cells, expansion of intercellular area, loosening of the basal membrane and defects in it with invagination of the epithelial cells into the submucous layer. The most striking changes were discovered after a thrice-repeated 30-minute occlusion of the gall bladder artery. The degree of destructive changes proved to depend on the number of stimulated spasms (occlusions) and not on the duration of ischemia. This gives grounds to believe that multiple circulatory disorders participated in the complicated pathogenesis of cholecystitis.  相似文献   

19.
1. Urinary bladders are found in the amphibia, chelonian reptiles and mammals. In these orders liquid urine is stored in the bladder and eliminated at intervals from the body by micturation. 2. In the amphibia and chelonian reptiles, the urinary bladder is a functional extension of the renal tubules. The composition of the urine in the bladder is modified by the active movement of water and ions across the bladder wall, and these transporting processes are under hormonal control. The bladder acts as a water reservoir which can be drawn upon in times of water shortage. 3. The mammalian bladder separates two widely differing water phases, namely the urine which is frequently hypertonic to the blood and the tissue fluids which are isotonic. Its function is uniquely one of storage, and no adjustment to the composition of the urine is made by active transport of either water or ions across the bladder wall. 4. The epithelium lining the mammalian bladder is the site of the osmotic barrier between urine and tissue fluids. This functional barrier is dependent on the structure of the epithelium and is maintained despite large alterations in the surface area of the epithelium as the bladder rapidly contracts, or slowly dilates. 5. The epithelium is of mixed mesodermal and endodermal origin, is transitional in type and is usually 3 or 4 cell-layers thick. If this urothelium is damaged, it has a high capacity for regeneration and rapidly re-establishes an intact barrier over the luminal surface. 6. The superficial cell layer of this epithelium is composed of large, polyploid, highly differentiated squamous cells which have a long life span. These cells are limited on their free surface by an unusual, angular, semi-rigid luminal membrane. This membrane is assembled in the Golgi complex. 7. The luminal membrane is composed of thickened, discoidal plaques, separated by narrow bands of thinner membrane. When the bladder contracts, the membrane folds along the thinner ‘hinge’ regions, and the rigid discoidal plates invaginate to form fusiform, cytoplasmic vacuoles. The thickened plaques contain a hexagonal lattice of sub-units, spaced at 14 nm centre-to-centre. Each sub-unit in the lattice is itself composed of 12 smaller particles. These particles may be envisaged as small rods 3 nm in diameter and 12 nm long, and are inserted into matrix from which they project on the luminal face by about 3 nm. Each rod has a central hydrophobic portion separating distal hydrophilic ends. 8. The chemical composition of this luminal membrane is unusual. Cerebroside is a major component of the polar lipid fraction and there is an unusually high proline content in the protein fraction. When the mucoproteins are adequately dispersed, and the proteins separated by electrophoresis, a few major proteins are revealed in 33000–80000 dalton range of molecular weight. 9. If the normal structure of the luminal membrane is altered, either by physical damage or by failure of the cells to produce it, the barrier function of the epithelium is lost. 10. The structure and function of this membrane depend ultimately on its chemical composition. Cerebroside is known to decrease the permeability of lipid bi-layers to water, but for maximum impermeability a lipid bi-layer must be maintained in a condensed configuration. The stresses of bladder distension and contraction might be expected to disrupt the bi-layer, and it is suggested that the function of the rigid plaque regions is to reduce mechanical stresses in the membrane to a minimum. The plaque areas occupy between 73 and 90 % of the membrane surface, and only the remaining 10–27% of the membrane is thus subject to bending and distortion when the bladder contracts or expands. The structure of the plaque areas is probably determined by the nature of the complex proteins which form the sub-units. Proline is known to confer rigidity on polypeptide chains, and may play an important rôle in ordering the structure of the plaques. 11. The bladder epithelium, though normally differentiated as a transitional epithelium, has other biologicai potentialities. It can undergo squamous metaplasia to form a stratified cornified epithelium in response to mechanical irritation and/or vitamin A deficiency. If transplanted from its normal location, it can induce other supporting mesenchyme tissues to lay down bone. When regenerating in response to damage, the newly formed transitional cells can act as phagocytes and engulf and digest damaged or dying cells. In the normal animal the epithelium is largely protected from tumour formation by cell-mediated immunological surveillance. The defensive mechanisms are triggered by tissue-type specific antigens which develop in neoplastic bladder epithelial cells.  相似文献   

20.
Many pathogens must overcome an epithelial barrier in order to establish an infection. Unsurprisingly, such pathogens have evolved different mechanisms to overcome this obstacle, targeting specific epithelial structures or functions. These include disruption of epithelial barrier function, transcytosing from the apical to the basolateral membrane domain or inducing cell movement such as neutrophil recruitment. When studying these processes in vivo, animal models often fail to mimic the disease observed in humans and present a complex system in which many variables cannot be controlled. Therefore, in vitro transepithelial models that permit the study of a relevant biological surface have been developed, to integrate not only interactions between bacteria and epithelial cells but also, under certain conditions, to integrate a third cell type, such as neutrophils or dendritic cells. Such models are particularly useful for studying the bacteria-host relationship as it would occur in the microenvironment of the human epithelium and have enhanced our understanding of the unique strategies by which pathogenic bacteria exploit host cells to overcome the initial epithelial hurdle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号