首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has already been demonstrated that the adaptation of intestinal calcium absorption of rats on a low calcium diet can be eliminated by thyroparathyroidectomy plus parathyroid hormone administration. This treatment elevates intestinal and plasma levels of 1,25-dihydroxyvitamin D3 in rats on a high calcium diet while producing no change in rats on a low calcium diet. It therefore appears likely that the modulation of intestinal calcium absorption by dietary calcium is mediated by the parathyroid glands and the renal biogenesis of 1,25-dihydroxyvitamin D3. Changes in the other unknown vitamin D metabolite levels as a result of dietary calcium are also modified by thyroparathyroidectomy and parathyroid hormone administration, but the effect of these metabolites on intestinal calcium transport is unknown.  相似文献   

2.
Rats maintained on tritiated 1,25-dihydroxyvitamin D3 as their sole source of vitamin D and placed on diets differing in calcium content had similar intestinal levels of tritiated 1,25-dihydroxyvitamin D3. Since 1,25-dihydroxyvitamin D3 administration eliminated adaptation of intestinal calcium transport, it appears that increased production of 1,25-dihydroxyritamin D3 is responsible for the stimulation of calcium transport by low dietary calcium. When maintained on tritiated 1,25-dihydroxyvitamin D3, rats fed a low-phosphorus diet had somewhat higher levels of tritiated 1,25-dihydroxyvitamin D3 in the duodenum and plasma than rats on a normal-phosphorus diet. In addition to stimulating 1,25-dihydroxyvitamin D3 synthesis, low dietary phosphorus may increase the accumulation of 1,25-dihydroxyvitamin D3 in both intestine and plasma.  相似文献   

3.
To understand better dietary regulation of intestinal calcium absorption, a quantitative assessment of the metabolites in plasma and duodenum of rats given daily doses of radioactive vitamin D3 and diets differing in calcium and phosphorus content was made. All known vitamin D metabolites were ultimately identified by high-pressure liquid chromatography. In addition to the known metabolites (25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D3, 25,26-dihydroxyvitamin D3, and 1,24,25-trihydroxyvitamin D3), several new and unidentified metabolites were found. In addition to 1,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3, the levels of some of the unknown metabolites could be correlated with intestinal calcium transport. However, whether or not any of these metabolites plays a role in the stimulation of intestinal calcium absorption by low dietary calcium or low dietary phosphorus remains unknown.  相似文献   

4.
Previous studies have shown that the serum levels of the primary regulators of calcium (Ca) and phosphorus (P) metabolism, 1,25-dihydroxyvitamin D and parathyroid hormone, may change with age. Therefore, the effect of age on the ability of the rat to maintain a positive Ca and P balance was determined. Young (1.5 months) and old (18 months) rats were divided into three groups and fed either a low-Ca, high-P diet; a high-Ca, low-P diet; or a high-Ca, high-P diet. After 14 days, the young rats were in positive Ca and P balance regardless of diet. The old rats on the low-Ca, high-P diet were in negative Ca balance and positive P balance. The old rats on the other diets were in positive Ca and P balance. The negative Ca balance of the old rats was due to decreased intestinal absorption of Ca. Intestinal absorption was assessed by determining the percentage of dietary Ca absorbed in vivo and by measuring the active transport of Ca using the everted gut sac in vitro. Intestinal P absorption showed little change with age, except for a decrease in old rats on the high-Ca, low-P diet. Renal adaptation to dietary Ca and P restriction was similar in both young and old animals. Plasma Ca levels were unchanged with age, but plasma P levels decreased with age regardless of diet. These changes in Ca balance with age may reflect the reported decrease in serum 1,25-dihydroxyvitamin D3 levels and the slight increase in PTH levels with age. The inability of old rats to maintain a positive Ca balance in the face of Ca deprivation is consistent with a general characteristic of the aging process—the decreased ability of an organism to adapt to changes in the external environment.  相似文献   

5.
Rats maintained on a diet low in phosphorus produce 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3 whether they have been thyroparathyroidectomized or not. On the other hand, rats maintained on low-calcium diets produce 1,25-dihydroxyvitamin D3, but lose this ability within 48 hr after thyroparathyroidectomy. This loss of ability to synthesize 1,25-dihydroxyvitamin D3 can be prevented or be restored by replacing their drinking water with calcium gluconate-glucose solution which returns their high serum inorganic phosphorus to normal levels. In thyroparathyroidectomized rats under a variety of conditions, the ability to synthesize 1,25-dihydroxyvitamin D3 correlates with serum inorganic phosphorus values below 7–8 mg/100 ml while the ability to synthesize 24,25-dihydroxyvitamin D3 correlates with serum phosphorus values above 7–8 mg/100 ml. There is in addition a close correlation between reduced kidney cortex inorganic phosphorus levels and the synthesis of 1,25-dihydroxyvitamin D3. It is suggested that the renal tubular cell inorganic phosphorus level underlies the regulation of synthesis of 1,25-dihydroxyvitamin D3 in the kidney and that the parathyroid hormone and calcitonin regulate 1,25-dihydroxyvitamin D3 synthesis via their effects on renal cell inorganic phosphorus levels.  相似文献   

6.
These studies investigated the initial stimulation of intestinal calcium absorption in the rat by 1,25-dihydroxyvitamin D3. To produce a functional vitamin D3-deficiency, rats were fed a diet containing 2.4% strontium. After 10 days on the diet, intestinal calcium uptake, as measured by everted gut sacs, was significantly depressed. Strontium-fed rats were dosed orally with 1,25-dihydroxyvitamin D3, and changes in intestinal calcium uptake, intestinal alkaline phosphatase activity, and intestinal calcium-binding protein were measured as a function of time after dose. Calcium uptake was significantly increased in the proximal 2.5 cm of the duodenum at 4 h and along the whole duodenum by 7 h. Intestinal alkaline phosphatase activity, measured in a Triton extract of the mucosal homogenate and in isolated brush border complexes, was also increased by 7 h. Using both gel electrophoresis and immunodiffusion against a specific antiserum, an increase in intestinal calcium-binding protein was detected in intestinal supernate at 4 h after dosing. Almost no calcium-binding protein was detectable in strontium-fed rats dosed with propylene glycol only. These time studies are consistent with a role for both alkaline phosphatase and calcium-binding protein in the 1,25-dihydroxyvitamin D3-stimulated uptake of calcium by the intestine. In addition, the usefulness of strontium feeding for producing a functional vitamin D3 deficiency in rats is demonstrated.  相似文献   

7.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

8.
OBJECTIVE: The purpose of this study was to examine the effects of vitamin K2 administration on calcium balance and bone mass in young rats fed a normal or low calcium diet. METHODS: Forty female Sprague-Dawley rats, 6 weeks of age, were randomized by stratified weight method into four groups with 10 rats in each group: 0.5% (normal) calcium diet, 0.1% (low) calcium diet, 0.5% calcium diet + vitamin K2 (menatetrenone, 30 mg/100 g chow diet), and 0.1% calcium diet + vitamin K2. After 10 weeks of feeding, serum calcium and calciotropic hormone levels were measured, and intestinal calcium absorption and renal calcium reabsorption were evaluated. Bone histomorphometric analyses were performed on cortical bone of the tibial shaft and cancellous bone of the proximal tibia. RESULTS: Feeding a low calcium diet induced hypocalcemia, increased serum parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D [1,25(OH)2D] levels with decreased serum 25-hydrovyvitamin D [25(OH)D] level, stimulated intestinal calcium absorption and renal calcium reabsorption, and reduced cortical bone mass as a result of decreased periosteal bone gain and enlarged marrow cavity, but did not significantly influence cancellous bone mass. Vitamin K2 administration in rats fed a low calcium diet stimulated renal calcium reabsorption, retarded the abnormal elevation of serum PTH level, increased cancellous bone mass, and retarded cortical bone loss, while vitamin K2 administration in rats fed a normal calcium diet stimulated intestinal calcium absorption by increasing serum 1,25(OH)2D level, and increased cortical bone mass. CONCLUSION: This study clearly shows the differential response of calcium balance and bone mass to vitamin K2 administration in rats fed a normal or low calcium diet.  相似文献   

9.
Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets. Replacing glucose with fructose prevented these increases in Ca2+ transporter, CYP27B1, and 1,25(OH)2D3 levels induced by a low Ca2+ diet. In adult mice fed for three mo a normal Ca2+ diet, renal expression of CYP27B1 and of CYP24A1 (24-hydroxylase) decreased and increased, respectively, when the carbohydrate source was fructose instead of glucose or starch. Intestinal and renal Ca2+ transporter activity and expression did not vary with dietary carbohydrate. To determine the time course of fructose effects, a high fructose or glucose diet with normal Ca2+ levels was fed to adult rats for three mo. Serum levels of 1,25(OH)2D3 decreased and of FGF23 increased significantly over time. Renal expression of CYP27B1 and serum levels of 1,25(OH)2D3 still decreased in fructose- compared to those in glucose-fed rats after three mo. Serum parathyroid hormone, Ca2+ and phosphate levels were normal and independent of dietary sugar as well as time of feeding. Thus, chronically high fructose intakes can decrease serum levels of 1,25(OH)2D3 in adult rodents experiencing no Ca2+ stress and fed sufficient levels of dietary Ca2+. This finding is highly significant because fructose constitutes a substantial portion of the average diet of Americans already deficient in vitamin D.  相似文献   

10.
Young animals adapt to a low calcium diet by increasing renal production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active metabolite of vitamin D. However, the capacity of adult animals to adapt is markedly diminished. With the recent cloning of the cytochrome P450 component (CYP1a) of the renal 1-hydroxylase enzyme complex, it is now possible to determine directly the effect of dietary calcium and maturation on the expression of renal 1-hydroxylase. Using a ribonuclease protection assay, it was found that feeding a low Ca diet markedly increased renal CYP1a mRNA levels in young rats. However, feeding this diet to adult rats produced an increase in CYP1a mRNA that was only 10% that of the young rats. These studies demonstrate that a low calcium diet increases renal 1,25-dihydroxyvitamin D production in young animals but not in adult animals by increasing CYP1a expression. Since the low calcium diet increased plasma parathyroid hormone levels to similar levels in both age groups, this suggests that in the adult there is a renal refractoriness to parathyroid hormone.  相似文献   

11.
Transepithelial transport of calcium involves uptake at the apical membrane, movement across the cell, and extrusion at the basolateral membrane. Active vitamin D metabolites regulate the latter two processes by induction of calbindin D and the plasma membrane ATPase (calcium pump), respectively. The expression of calbindin D and the calcium pump declines with age in parallel with transepithelial calcium transport. The apical uptake of calcium is thought to be mediated by the recently cloned calcium channels-CaT1 (or ECaC2, TRPV6) and CaT2 (or ECaC1, TRPV5). The purpose of these studies was to determine whether there were age-related changes in intestinal calcium channel regulation and to identify the dietary factors responsible for their regulation. Young (2 months) and adult (12 months) rats were fed either a high calcium or low calcium diet for 4 weeks. The low calcium diet significantly increased duodenal CaT1 and CaT2 mRNA levels in both age groups, but the levels in the adult were less than half that of the young. The changes in calcium channel expression with age and diet were significantly correlated with duodenal calcium transport and with calbindin D levels. To elucidate the relative roles of serum 1,25(OH)2D3 and calcium in the regulation of calcium channel expression, young rats were fed diets containing varying amounts of calcium and vitamin D. Dietary vitamin D or exogenous 1,25(OH)2D3 more than doubled CaT1 mRNA levels, and this regulation was independent of dietary or serum calcium. These findings suggest that the apical calcium channels, along with calbindin and the calcium pump, may play a role in intestinal calcium transport and its modulation by age, dietary calcium, and 1,25(OH)2D3.  相似文献   

12.
Studies were undertaken to determine whether ovariectomy (ovx) would alter the ability of female rats to adapt to low dietary Ca intake by exhibiting an in duodenal active Ca transport. Intact and ovx female rats were fed diets containing 1.5, 0.50, or 0.02% Ca prior to measuring active Ca transport using everted duodenal sacs in vitro. In some experiments, ovx animals were pair-fed to intact animals of the same age consuming the same diet. When ovx animals were allowed to eat ad lib, we found that both growth rate and duodenal active Ca transport increased relative to age-matched, intact controls. However, when growth of ovx animals was maintained at the control rate by pair-feeding, ovx per se did not affect intestinal active Ca transport. Ovx did not alter circulating levels of 1,25-dihydroxyvitamin D (1,25(OH)2D). We found that intact females responded to the low-Ca (0.02%) diet with increased circulating 1,25(OH)2D levels and increased intestinal active Ca transport. Ovx animals exhibited the same increase in circulating concentrations of 1,25(OH)2D in response to low-Ca diet, but did not demonstrate increased duodenal active Ca transport. When ovx animals consumed the diet ad lib, they became larger and exhibited higher Ca transport rates than intact animals fed the high-Ca diet, but there was no difference in Ca transport between ovx animals fed diets containing different Ca contents. The results of these experiments demonstrate that in female rats, the ability to adapt to altered dietary Ca intake is dependent on intact ovarian function and is not necessarily directly related to circulating concentrations of 1,25(OH)2D.  相似文献   

13.
24,24-Difluoro-1,25-dihydroxyvitamin D3 has been synthesized by in vitro incubation of vitamin D-deficient chick kidney homogenates with 24,24-difluoro-25-dihydroxyvitamin D3. The compound produced was isolated and purified by successive high-performance liquid chromatographic steps and then identified by means of ultraviolet absorption spectrophotometry and mass spectrometry. The difluoro analog of 1,25-dihydroxyvitamin D3 is found to be highly active in stimulating intestinal calcium transport and bone calcium mobilization in vitamin D3-deficient rats.  相似文献   

14.
As a further means of evaluating 1,25-dihydroxyvitamin D3-parathyroid gland interaction and its relation to calcium homeostasis, a comparative study of the subcellular localization of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]in the parathyroid glands, intestinal mucosa, kidney, and liver of rachitic chickens has been carried out. Only in the chromatin fraction from parathyroids and intestinal mucosa could there be demonstrated selective and specific localization of the 1,25(OH)2D3. The chromatin-bound picomoles of 1,25(OH)2D3 (per gram of tissue) was in the ratio (mucosa:parathyroids:kidney:liver) of 1.0:0.23:0.11:0.17 2 h after an intracardial injection of 290 pmol of [3H]1,25(OH)2D3. This same ratio after a 30-min (23 °C) homogenate incubation with 1 × 10?8m [3H]1,25(OH)2D3 was 1.0:1.0:0.10:0.03. Analogous results were obtained when reconstituted chromatin and cytosol fractions from the different tissues were compared for chromatin localization efficiency. This chromatin localization of 1,25(OH)2D3 in the parathyroid glands was temperature dependent. In addition, parathyroid glands were found to contain 3.0–3.5 S cytoplasmic and KCl-extractable chromatin receptors specific for 1,25(OH)2D3.  相似文献   

15.
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism.  相似文献   

16.
Phosphate utilization by fish is an important issue because of its critical roles in fish growth and aquatic environmental pollution. High dietary phosphorus (P) levels typically decrease the efficiency of P utilization, thereby increasing the amount of P excreted as metabolic waste in effluents emanating from rainbow trout aquaculture. In mammals, vitamin D3 is a known regulator of P utilization but in fish, its regulatory role is unclear. Moreover, the effects of dietary P and vitamin D3 on expression of enzymatic and transport systems potentially involved in phosphate utilization are little known. We therefore monitored production of effluent P, levels of plasma vitamin D3 metabolites, as well as expression of phosphatases and the sodium phosphate cotransporter (NaPi2) in trout fed semipu diets that varied in dietary P and vitamin D3 levels. Mean soluble P concentrations varied markedly with dietary P but not with vitamin D3, and constituted 40–70% of total effluent P production by trout. Particulate P concentrations accounted for 25–50% of effluent P production, but did not vary with dietary P or vitamin D3. P in settleable wastes accounted for <10% of effluent P. The stronger effect of dietary P on effluent P levels is paralleled by its striking effects on phosphatases and NaPi2. The mRNA abundance of the intestinal and renal sodium phosphate transporters increased in fish fed low dietary P; vitamin D3 had no effect. Low-P diets reduced plasma phosphate concentrations. Intracellular phytase activity increased but brushborder alkaline phosphatase activity decreased in the intestine, pyloric caeca, and gills of trout fed diets containing low dietary P. Vitamin D3 had no effect on enzyme activities. Moreover, plasma concentrations of 25-hydroxyvitamin D3 and of 1,25-dihydroxyvitamin D3 were unaffected by dietary P and vitamin D3 levels. The major regulator of P metabolism, and ultimately of levels of P in the effluent from trout culture, is dietary P.Communicated by: C.-H. Wang  相似文献   

17.
There is a significant body of data that supports the concept that reproductive hormones in females have effects on duodenal calcium transport that are not mediated via altered circulating concentrations of 1,25-dihydroxyvitamin D (1,25(OH)2D). Previously, we have shown parallel alterations in duodenal Ca transport and longitudinal bone growth rate in sexually maturing female rats in response to ovariectomy and estradiol (E) treatment of ovariectomized (OVX) rats (OVX+E) without any change in circulating levels of 1,25(OH)2D or parathyroid hormone. Results are presented here from experiments designed to: (i) further explore the relationship between 1,25(OH)2D and ovarian status in the regulation of duodenal calcium transport, and (ii) determine whether OVX and E replacement alter circulating and duodenal levels of insulin-like growth factor I (IGF-I) that might be related to effects on Ca transport. Growth hormone, which has been shown to affect intestinal Ca absorption and vitamin D metabolism, is thought to act indirectly by stimulating IGF-I. Six-week-old female rats were OVX, given estradiol implants (OVX+E), and fed a diet containing either 0.5% or 0.1% Ca for 3 weeks. In both diet groups, the OVX animals exhibited a higher level of Ca transport, as measured by the everted gut sac method, than either the intact controls or the OVX+E group; there was no difference in calcium transport between the different diet groups. Although there was no difference in circulating levels of 1,25(OH)2D among the intact, OVX, and OVX+E groups fed either diet, animals fed the 0.1% Ca diet had higher circulating levels of 1,25(OH)2D than those fed the 0.5% Ca diet. There was no difference in duodenal levels of calbindin9K among intact, OVX, and OVX+E animals in either diet group, although the animals fed the 0.1% Ca diet had higher levels of calbindin9K than the animals fed the 0.5% Ca diet. In animals fed the 0.5% Ca diet, OVX resulted in elevated serum and duodenal levels of IGF-1, as compared with intact and OVX+E animals on the same diet. In animals fed the 0.1% Ca diet, there was no elevation of IGF-I in the OVX group relative to intact and OVX+E animals. These results lend additional support to the concept that alterations in duodenal active calcium transport that occur with alterations in ovarian hormones are not mediated by changes in serum levels of 1,25(OH)2D, but may be related to some factor related to growth, possibly IGF-I.  相似文献   

18.
Specific binding proteins for 1,25-dihydroxyvitamin D3 were identified in bovine mammary tissue obtained from lactating and non-lactating mammary glands by sucrose density gradient centrifugation. The macromolecules had characteristic sedimentation coefficients of 3.5-3.7 S. The interaction of l,25-dihydroxy[3H]vitamin D3 with the macromolecule of the mammary gland cytosol occurred at low concentrations, was saturable, and was a high affinity interaction (Kd = 4.2 × 10?10M at 25 °C). Binding was reversed by excess unlabeled 1,25-dihydroxyvitamin D3, was destroyed by heat and/or incubation with trypsin. It is thus inferred that this macromolecule is protein as it is not destroyed by ribonuclease or deoxyribonuclease. 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and vitamin D3 did not effectively compete with 1,25-dihydroxyvitamin D3 for binding to cytosol of mammary tissue at near physiological concentrations of these analogs, thus demonstrating the specificity of the binding protein for 1,25-dihydroxyvitamin D3. In vitro subcellular distribution of 1,25-dihydroxy[3H]vitamin D3 demonstrated a time- and temperature-dependent movement of the hormone from the cytoplasm to the nucleus. By 90 min at 25 °C 72% of the 1,25-dihydroxy[3H]vitamin D3 was associated with the nucleus. In addition a 5–6 S macromolecule which binds 25-hydroxy[3H]vitamin D3 was demonstrated in mammary tissue. Finally, it is possible that the receptor-hormone complex present in mammary tissue may function in a manner analogous to intestinal tissue, resulting in the control of calcium transport by 1,25-dihydroxyvitamin D3 in this tissue.  相似文献   

19.
20.
Duodenal active calcium transport and longitudinal bone growth rate have been shown previously to be regulated in parallel by alteration of gonadal hormone status in sexually maturing female rats. The present study was designed to extend these observations to the sexually maturing male rat. Male rats were orchidectomized (ORX) and given Silastic implants containing either testosterone or estradiol at 6 weeks of age. At 9 weeks of age, duodenal active calcium transport was measured by the everted gut sac method and longitudinal bone growth rate was determined by tetracycline labeling. Decreases in body weight, longitudinal bone growth rate, duodenal calcium transport, and serum Ca and P were exhibited by ORX animals as compared with age-matched control animals. Testosterone administration to ORX animals resulted in an increase in body weight, longitudinal bone growth rate, duodenal calcium transport, and serum Ca and P as compared with ORX animals to a level not significantly different from that of age-matched control animals. Estradiol administration to ORX animals resulted in an additional decrease in body weight, although no significant effect on duodenal calcium transport, serum Ca, or P was noted as compared with ORX animals. There were no statistically significant alterations in the circulating levels of 1,25-dihydroxyvitamin D, parathyroid hormone, or osteocalcin in response to any of the experimental manipulations of gonadal status. These results indicate that, as in the female, gonadal hormone status affects intestinal calcium transport in sexually maturing male rats in parallel with changes in bone growth rate by mechanisms that are independent of circulating levels of 1,25-dihydroxyvitamin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号